How to upgrade the European power grid to enable high penetration of wind power

Zénó Farkas, Gábor Papp
Collegium Budapest Institute for Advanced Study, Eötvös University eScience Regional Knowledge Centre
Hungary

MANMADE Workshop
Budapest, 25 September 2009
Outline

• Motivation: Growth of wind power capacity
• How much wind power can Europe produce?
• UCTE power flow scenarios
• Case study: Spain
• DC model, and why it failed
• Linear programming model
• Road to modelling the whole European network
Growth of wind power

Cumulative wind power capacity in the EU [MW]

Source: European Wind Energy Association
Wind power installed in the EU by end of 2008: 64,935 MW
Source: European Wind Energy Association
New installed power capacities in the EU in 2008

Source: European Wind Energy Association

- Wind: 8.484MW (35.6%)
- Natural gas: 6.932MW (29.1%)
- Solar (PV): 4.200MW (17.6%)
- Oil: 2.495MW (10.5%)
- Coal: 762MW (3.2%)
- Hydro: 473MW (2.0%)
- Nuclear: 60MW (0.3%)
How much wind power can Europe produce?

European Environmental Agency: “Europe's onshore and offshore wind energy potential” (technical report, June 2009). Its main conclusion is that considering

● technological development in turbine design,
● environmental constraints and
● economical competitiveness,

potentially approx. 12 200 TWh/year wind energy can be produced in 2020, which is 3 times larger than the EU's projected total energy demand.
Wind power is always changing, like weather,

© 2001 EUMETSAT
Power flow in the UCTE grid: Business as usual scenario

Power flow in the UCTE grid: Northern wind scenario

Power flow in the UCTE grid: Southern wind scenario

Case study: Spain

Share of wind power in consumption (monthly average)

Installed capacity (end of 2008): 16740 MW

Wind power record in Spain! 5 March 2009

The share of wind power exceeded 40% for several hours. The peak wind power was 11180 MW, corresponding to 69% capacity factor (the long time average capacity factor is 21-23%).

0,0%
2,0%
4,0%
6,0%
8,0%
10,0%
12,0%
14,0%
16,0%
18,0%

0,0%
2,0%
4,0%
6,0%
8,0%
10,0%
12,0%
14,0%
16,0%
18,0%

Power load
18 March 2009
source: UCTE
France-Spain border

Cross border lines maximum total capacity: 2930 MW

Source: UCTE
Power grid simulation: DC model (linearized)

Assumptions:

- Connecting lines at a node have the same voltage (U) and phase (θ)
- Along a line, phase shift Δθ << 1
- x << r for the complex resistance r+i*x

Power flow: \(P = U^2 \frac{\Delta \theta}{x} \)

Constraints: sums of power flows at nodes are zero → sparse set of linear equations for the phases.
DC model is not suitable for power line overload testing

Max. power line capacity: 55 MW

Linear programming model:
Linear programming model

Variables:

\[I_{21} = P_2 - P_1 \]
\[I_{31} = P_3 - P_1 \]
\[I_{32} = P_3 - P_2 \]

Model inequalities:

minimize: \[|I_{21}| + |I_{31}| + |I_{32}| \]
\[|I_{21}| \leq 55 \text{ MW} \]
\[|I_{31}| \leq 55 \text{ MW} \]
\[|I_{32}| \leq 55 \text{ MW} \]
\[I_{21} + I_{31} = 100 \text{ MW} \]
\[-I_{21} + I_{32} = -70 \text{ MW} \]
\[-I_{31} - I_{32} = -30 \text{ MW} \]
Linear programming solver

lp_solve

- Easy to formulate the problem
- Good performance compared to commercial software
- Open source, free to use

“It is much easier than Matlab, I don't have to write the many zeros into the matrix.” (Aleksandra Kanevce, Skopje)
European network modelling

- Linear programming model instead of DC model
- Goal: determine safe maximum of wind power
- Power plant types: base load plants (e.g. nuclear), conventional plants (e.g. natural gas fuelled), wind power plants
- Wind modelling: ERA-40, ERA-Interim, airport measurement data
- The system softly fails if wind power plants has to be stopped
- Hard failure: the network collapses if one line fails (N-1 criterion)
- Still work in progress
A closer look at the UCTE map