
Abstract — Networks composed of large number of nodes 

interacting in structured ways such as power grids, 

communication networks, social networks or market 

networks are critical port of the world’s infrastructure. Many 

times minor changes of the sate in some of the nodes can 

spread rapidly and cause major effects in the network, so 

understanding the behavior of  the complex network due to 

changes of the state is of a great interest. In this paper we 

present influence spreading in networks driven by the 

influence model. We also show how the topology and 

connectivity of a network affect the spread of influence.  

Keywords — influence, complex networks, standard 

deviation. 

I. INTRODUCTION 

Networks containing large number of nodes connected 

in a specific way are  common topic of research, because 

inner changes caused by some events make the network a 

dynamic system with certain behavior specific to network 

topology and variety of parameters of the network. The 

nature of the network dynamic is versatile and what is 

nowadays  most commonly studied is spreading of failures 

of nodes, spreading of information, influence, or spreading 

of computer and natural viruses. Once an event is 

introduced in the network, nodes react to it, possibly 

changing their state, and according to their influence level 

in the network, they try to spread their current state to the 

nodes they are connected to. 

For example, let us take failure of a router as an event in 

internet network. The event causes increased rerouted 

traffic in the neighbor routers, causing possible changes in 

their state. After the failure, each node determines its 

current state according to the influence it gets from the 

neighbor nodes. However, the state of each router does not 

only depend on the offered traffic from the neighbors, it 

also depends on the possibility of hardware failures or 

power loss. Similar example are social networks. When an 

idea is lunched, people make decision whether to accept 

the idea or not. Since in social network people are 

connected with weighted links defined according to 

influence power of each individual, every person gets 

certain amount of influence from the people it is connected 

to. Thus, both the attitudes of the environment and the 

attitude of each individual in a network are important for 

making certain decision. Clearly, nodes which have high 

power of influence are not very likely to change their own 

decision under influence of weak nodes, which on the 

other side, are susceptible to easy changes due to outer 

influence.    

No matter what is chosen to be an event in the network, 

there are several possible models of spreading the change 

in the networks. In [1] two basic diffusion models for 

spreading influence are used: linear threshold model and 

independent cascade model, offering algorithms for 

maximizing the spread. [2] is presenting the spread of 

computer viruses in a computer network. In [3] the world-

wide web is used as a complex network for spreading ideas 

in the blogosphere. The concept of spreading in complex 

networks is even popular in the field of marketing by 

promotion of new products and spreading their popularity 

to the consumers [4]-[6].  

The concept that we would like to introduce in this 

paper is spreading the influence in a network using the 

influence model defined in [9]. In this model, nodes are 

presented with Markov chain. The state of each chain 

(node) not only depends on the state of its neighbors, but 

depends on its own current state. We consider networks 

with nodes that can have two different states. 

 The goal of this paper is to determine the system state 

regarding the average number of failed/influenced nodes, 

as well as its standard deviation for a different 

configuration of the local Markov chain, different network 

topologies and different weight calculation algorithms.  

In the following text, we first give (section II) a short 

description of the general influence model and propose 

structure of local Markov chains for a heterogeneous 

network where sites are can be interpreted as network 

routers or individuals in social networks. Afterwards in 

section III we give different algorithms for calculating the 

weight of links in such networks. Since we want to analyze 

the behavior of different real network topologies, in 

section IV we  give a brief overview of the most common 

topologies of complex network. Results of the behavior 

analysis of different complex networks, obtained by 

simulations are presented in section V. Eventually the 

conclusions of the work in this paper are given in section 

VI. 

II. INFLUENCE MODEL 

The influence model is suggested in [9] as a model of 

random, dynamical interactions on networks. We refer the 

reader to [9] for a full account of the model and its 

properties; here we give a brief description of the model. 

In the influence model the network is observed at two 

levels: the network level and the local level. At network 

level each node is treated as one active entry and is called 

site. Each site can be in different state, defined at the local 
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level. Looking at local level, each site is presented by a 

local Markov chain. Each node of the Markov chain is 

called state and represents the state of the site.  

The quantitative measure of the influence that each 

node has on the neighbors, is defined at the network level 

with the directed graph  ( ')D
 
with nodes from 1 to n. D 

is nxn stochastic matrix called network influence matrix, 

containing information about the nodes interconnectivity. 

The entry dij has a non zero value only if node i is 

connected to node j. The magnitude of dij defines the 

amount of influence node i exerts on node  j. In order to 

get a network where the influence that each node receives 

from its neighboring nodes equals one, the graph is defined 

through the transposed form of D. 

On the local level each node is represented with another 

directed graph ( )A . A is again stochastic matrix with size 

m m , called local-state transition matrix, where m  is the 

number of different states that a node can take. The graph 

defines a Markov chain, where each entry aij is the 

transition probability from state i to state j.  

At any discrete moment k, the node i  has status defined 

with the vector [ ] [0...010...0]'is k . This vector has only 

one 1 at position equal to the status of the node. The status 

of the network, expressed with one vector will be:  

 

 1 2[ ] [ ] [ ]... [ ] 'nS k s k s k s k
      

 (1) 

  
The probability that node i  will have certain status in 

time k   is defined with the vector 

i i i i[k]=[ (0) (1)... ( ) ]'p p p p m  where i ( )p m is the probability 

that the Markov chain of node i  is in state m. The status 

probability of the whole network, expressed with one 

vector will be: 

 

1 2[ ] [ ] [ ]... [ ] 'nP k p k p k p k        (2) 

 

The evolution of the state at every next time step k+1  is 

related to the probability of the current time step and 

defined with the equations: 

 

 
'[ 1] MultiRealize( '[ 1])S k P k

   
(3) 

 
'[ 1] '[ ]P k S k H

         
(4) 

 

The MultiRealize operation is equivalent to n 

independent flipping of a coin. Each outcome of the 

flipping determines the sate of a node. 

H is influence matrix defined as Kronecker product of  

the network matrix 'D  and the transition matrices of each 

local chain Aij 
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H is not a stochastic matrix because its row sum is not 

one, but it still has some properties of stochastic matrix: it 

is nonnegative and has 1 as a dominant eigenvalue [9]. Aij 

represents a transition matrix of a Markov chain and can 

be any matrix which satisfies the condition 1 1
i iij m mA , 

where m is the number of states of the local Markov chain. 

Each submatrix dijAij of H contains the influence that every 

single state of node i exerts on node j. That influence can 

be decomposed in two parts. The first part Aij  represents 

the dynamics of states which influence the state of node j, 

whereas the second part  dij is a connection specific value 

which determines the amount of that dynamics that will be 

used for deciding the state of node i. 

According to the value of Aij, the influence model can 

be homogenous or heterogeneous. In the homogeneous 

model each node has the same structure of local Markov 

chain and therefore Aij =A.  In the heterogeneous model, 

nodes have different structure of the local Markov chain.  

In reality networks are heterogeneous and have local 

Markov chains which are different for every single node. 

For example, from a functional aspect of view, in the 

internet network routers have local Markov chains with 

two states, on or off. The transition probabilities of each 

router are different and depend on many factors like, traffic 

load, maintenance, environmental factors etc. It is the same 

case in the social networks: individuals have different 

probabilities of changing their own attitude under no 

influence. In order to make a model where nodes will not 

have randomly distributed local Markov chains, we define 

the structure of 
iA by a simple rule: the importance of a 

node. The main idea comes from the fact that in practice, 

well connected nodes are of great importance, and 

therefore are better protected and maintained rather then 

nodes that are connected with just a few neighbors. 

Nevertheless, there is a possibility that even those nodes 

fail because well connected nodes are subdued to a larger 

demand of service by the neighbor nodes. Therefore better 

connected nodes are assigned smaller probabilities for 

failure rather than weakly connected nodes. 

 For these types of networks, each node i has the same 

dynamics of influence towards every node it is connected 

to, and therefore we assume that the local Markov chain 

for a single node has the same structure in the influence 

matrix H i.e. , {1,..., }ij iA A j n . Although iA  can be of 

any size, we consider that each node is a two-state Markov 

chain, with transition matrix iA . 

Let iA  is defined as follows: 
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where 1 ip is the probability that once in normal state, 

node i  will remain normal, while ip  is the probability of 

failure. Seemingly,  1 iq  is the probability that a failed 

node will remain failed, while iq  is the probability that the 

node will be repaired.  Let minp  and maxp  are the minimum 

and maximum values that can be assigned to any pi in the 

network. Let ( )d i is the degree of node i and mind  and 

maxd are the minimum and maximum degree of the 

network. The probability pi is defined as: 
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 According to (7) each node gets portion of failure 

probability inversely proportional to the degree. As far as 

the probability q is concerned, we assume that it has the 

same value for every node. That means that every failed 

node is recovered with the same probability. 

 

III. WEIGHT CALCULATION TECHNIQUES 

The amount of influence that a link possesses depends on 

many factors. In the following text we present four 

different techniques for weight calculation, which take into 

consideration different aspects of network topology. 

A. Equal weight distribution algorithm 

The simplest solution for assigning weights to incoming 

links of a node in a network is to take a model where each 

neighbor of a node implies the same amount of influence. 

Thus, the influence that node A imposes on node B 

decreases as the number of incoming links of B increases. 

Except the influence from the neighbor nodes, each node 

has the ability of self-influence of a same amount as the 

influence from other nodes. This results with adding a self-

loop in the network graph.  Assuming that the total 

influence a node can get from the neighbors and from itself  

is: 

 

1ij

i V

d               (8)  

 

and assuming that the  j is connected to m neighboring 

nodes, then the weight of each link that leads to the node 

of interest will be 

 

1

1
ijd

m
              (9) 

 This solution does not give the best results in practice, 

because the influence each node has on others depends on 

the number of nodes it is connected to. If we take a simple 

example in computer networks consisting of few stations 

generating high traffic flow towards the router they are 

connected to, joining of another station with very little 

traffic flow towards the router equally reduces their 

influence. This means that in real networks of any type, not 

all the nodes have the same importance and influence to 

the nodes they are connected to.  

B. Node betweenness algorithm 

In order to get a model closer to the real networks, we 

assign weights to the links according to the importance of 

the nodes. For that reason we use the betweenness from the 

theory of graphs [7], as parameter for the weight 

calculation algorithm. 

Betweenness is a measure of the importance of a node 

in a network, and is calculated as the fraction of shortest 

paths between node pairs that pass through the node. 

Betweenness is, in some sense, a measure of the influence 

a node has over the flow of information through the 

network. Let G is a graph given with set of nodes V and set 

of edges E. Let s and t are two nodes of the graph.
st

is the 

number of paths that pass from s to t.  Let ( )st v  is the 

number of shortest paths that pass through the node v. The 

central betweenness of node v is: 

 

( )
( ) st

s v t V st

v
C v

        

 (3) 

 

For example, let us consider  a simple  network shown with 

the directed graph on Fig. 1. 

 
Fig. 1. Simple network 

 

Fig.2 shows importance of each node according to the 

number of shortest paths that pass thorough it.  

 
Fig. 2. Simple network with assigned node betweenness 

 

Once we have the betweenness of each node, we aim to 

assign weight to incoming links according to the value of 

node betweenness of their originating nodes. Let Pi  is a 

subset of nodes from V  that have outgoing links directed 

to node i. Let C(i) is the betweenness of node i. We assign 

weight to each incoming link proportional to the 

originating node betweenness. We first sum the 

betweenness of all nodes that belong to the set Pi, 

including the betweenness of node i, and then divide the 

betweenness of each node by the sum. Each link that 

originates from node ij P  is assigned magnitude which 

is fraction of the total incoming influence, proportional to 

the fraction of its betweenness in the total sum of 

betweenness. Taking in consideration that the incoming 

influence of each node equals 1 (8), the expression for 

determining the weight of the influence that j has on node i 

will be calculated as 
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C. Edge betweenness algorithm 

Just like node betweenness denotes the importance of 

the nodes, the edge betweenness, in the similar way assigns 

values to links according to their importance. It is 

calculated as a number of shortest paths that pass through 



 

the edge. Let ( )st e  is the number of shortest paths from s 

to t that pass through the edge e and 
st

is the total number 

of paths from s to t. The edge betweenness of edge e is: 
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  (11) 

 

The weight that is assigned to links leading to a certain 

node is calculated from the edge betweenness divided by 

the sum of all incoming links, thus providing that the sum 

of the incoming influence of a node is one. 

 
Fig. 3. Simple network with assigned edge betweenness 

 

Fig. 3 shows normalized values of edge centrality 

calculated for the simple directed graph on Fig. 1. The 

links with highest values have the highest importance.  

Let Qi  is a subset of edges from E  that have direction 

towards node i. Let C(e) is the betweenness of  edge e. 

Since the incoming weights of a node must satisfy (8) the 

weigh of edge e leading from node i to j will be calculated 

as 
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          (12) 

 

D. Degree algorithm 

The degree weight calculation algorithm, assigns weight 

to incoming links of a node according to the degree of 

nodes the links are originating from.  Let Pi  is the same 

subset of nodes from V  that have outgoing links to node i 

and let D(i) is the degree of node i. Like in the previous 

techniques, we first sum the degree of all neighbor nodes 

of  i and then divide the degree of each node by the sum. 

This technique assigns high values of weight for links that 

are originating from well connected nodes. The weight of 

the link between nodes i and j is 
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IV. COMPLEX NETWORKS 

Since one of our main goals is to analyze the behavior of 

different real network topologies, for that purpose we use 

different types of complex networks. Complex networks 

have certain properties that make them different from 

aspect of topology. The difference comes from the way 

nodes are connected among each other. According to the 

inter-link dependences several types of network topologies 

are defined.  

A. Random Networks 

The simplest and most straightforward realizations of 

complex networks are random networks. These networks 

are characterized by nodes that are connected randomly 

connected to each other, with certain probability p [10]. 

For networks with large number of links, the average 

number of links per node is the same and the degree 

distributed follows the Poisson distribution. This fact 

shows that the probability that a node will have large 

deviation from the average value is exponentially small.  

These networks are pioneers in complex network theory, 

because most of the large scale networks found in reality 

(WWW, internet, cellular, power, neural networks) were 

considered to be random. However, it was later discovered 

that, the real networks have different topology 

dependences. 

B. Geographic Random Networks 

A special case of random networks are geographically 

random networks. These networks are characterized by 

nodes that are randomly distributed in the space, and are 

connected only to the nodes in their proximity. These 

networks always have one giant cluster component that 

contains most of the nodes. A typical example of random 

geographic network is wireless ad hoc network where each 

wireless station is connected to the stations that are within 

its range of coverage. 

C. Small-world Networks 

According to the link structure, small world networks 

stand between random and lattice connected network. They 

are generated by randomly replacing fraction of links from 

d-dimensional lattice structure [11].  If the fraction equals 

zero, than the network is lattice, and if the fraction is one, 

than the network is random network. For fraction between 

the extreme values, we get a small- world network. The 

name of these networks comes from the property that the 

average shortest distance between two nodes increases 

logarithmically with the number of nodes. Therefore the 

wider the network, it is easier to connect two distant nodes 

with just a few links. Thus, although the network is large, 

at the same time it is small because any node is reachable 

in average a few steps. 

D. Scale-free Networks 

Small world networks are composed of highly connected 

clusters, in which everybody knows everybody from the 

cluster, and very few of them provide connectivity to the 

rest of the world by setting links with other clusters. 

However, some of the real networks like the world-wide 

web, networks of scientific citations etc. have additional 

properties which classify them as a subtype of small world 

networks. These networks are called scale-free, meaning 

that they have distribution of connectivity that decays with 

power low.  The number of nodes with exactly k links 

follows a power law, each with a unique degree exponent. 

These networks are characterized by presence of nodes 

called hubs, with large number of links. These nodes are 

dominant in the structure of all scale-free networks, 

making each node from the network easily reachable from 

any point [11]-[12].  



 

V. RESULTS 

The most important parameters which are studied for 

defining the behavior of different networks are mean value 

and standard deviation of failed nodes. These parameters 

for homogeneous networks are given in analytical form in 

[9], however, the analytical methods for calculation of 

mean value and standard deviation are not applicable for 

heterogeneous influence model. Therefore we use 

simulations to determine the behavior of different network 

topologies and weight calculation algorithms.  

We are simulating the behavior of four different network 

topologies: scale-free, small-world, random and 

geographic random, each having 250 nodes. We used 

network generators with input parameters adjusted to 

values that will enable generating networks with nodes 

connected to an average of 6 other nodes. All the networks 

are connected to one giant cluster. The minimum 

probability that a node will fail is 
min 0.59p  and the 

maximum probability is 
max 0.99p . The simulations are 

executed for 500 time steps, and repeated for 50 different 

networks. 

 In all the simulations we plot the dependence of 

network behavior on the structure of the local Markov 

chain. Since the probability of failure p is calculated for 

each node according to (7), we plot the network behavior 

only against the recovery probability q. At the beginning of 

time k=0¸ all the nodes are in normal state, and very 

quickly the network reaches the mean value, deviating 

around it. Our goal will be finding the mean value and the 

standard deviation of node failures. 

 
Fig. 4. Dependence of network topologies and local Markov chain 

structure on mean value of failed nodes for equal weight algorithm 

 

 On Fig. 4 the dependence of mean value of the four 

different topologies on recovery probability q is shown. 

The links weight is calculated according to the equal 

weight calculating algorithm mentioned above. It is clear 

that mean value strongly depends on network topology, 

having the highest values for scale-free networks. The 

other topologies have similar dependence. Random 

network is the second most influent topology on mean 

value, leaving behind geographic random and small world 

network.  

Fig. 5 shows how the different weight calculation 

algorithms affect the network behavior of a scale-free 

network. Most intuitive behavior can be noted when the 

equal weight algorithm is used, because as recovery 

probability q increase, the number of failed nodes 

decreases evenly, unlike the node betweenness algorithm 

which introduces very high drop of failed nodes, especially 

for low values of recovery probability q.  This is due to the 

fact that node betweenness is calculated by the importance 

of every node. Because scale-free networks have hubs with 

many links, their betweenness is high, so once a hub is 

repaired its influence is very rapidly spread through the 

network. From the figure we can conclude that the edge 

betweenness and the degree weight algorithm are very 

close in nature, when number of failed nodes is concerned.  

 
Fig. 5. Dependence of weight calculation algorithm on mean value of 

failed nodes for a scale-free network 

 

 
Fig. 6. Dependence of standard deviation for different topologies on 

recovery probability q for node betweenness algorithm 

 

On Fig. 6 the dependence of standard deviation on 

network topology is shown. Again the scale-free networks 

are the networks which reach highest values of standard 

deviation. They are almost resistant to changes of value of 

the recovery probability q. The other types of networks 

have approximately the same values for the standard 

deviation. Although they are lower then the standard 

deviation of scale-free networks, for low values of 

recovery probability q, they reach higher values of 

standard deviation than the scale-free networks. 
 



 

 
Fig. 7. Standard deviation for different weight calculation  algorithms for 

scale-free networks 

  

Fig. 7  presents the dependence of weight calculation 

algorithm on standard deviation for a scale-free network. 

Similarly like the mean value, the standard deviation is 

most sensitive to recovery probability q for equal weight 

distribution algorithm, and most resistant to changes of q 

for node betweenness algorithm. In between stand the 

other weight calculation algorithms. 
 

 
Fig. 8. Standard deviation for different weight calculation  algorithms for 

small-world networks 

 

 Fig. 8  presents the dependence of weight calculation 

algorithm on standard deviation for a small-world network. 

It is clear that the standard deviation is almost the same for 

any of the algorithms for calculating the weight. The only 

parameter that is important in the standard deviation is the 

local Markov chain and the network topology. Although 

not presented on the figure, we can come to the similar 

results for all of the complex network topologies. 

VI. CONCLUSION 

From our simulations we can conclude that network 

topology has a major impact on the average number of 

failed/influenced nodes. The effect is mostly visible in the 

scale free network which have rather large number of such 

nodes for any values of the recovery probability, compared 

to the small-world, random and geographic random 

networks, which have similar behavior. We also conclude 

that besides the topology, another key concept for the 

network behavior is the weight that is assigned to the links. 

When we analyzed different weight calculation algorithms, 

we concluded that that a failure/influence is most rapidly 

spread when weights are calculated according to the node 

betweenness algorithm. Edge betweenness and degree 

algorithm give very similar results. The influence is spread 

most slowly when the equal weight distribution algorithm 

is used for assigning weights to the links.  

Another conclusion from our work is that although the 

standard deviation depends on network topology, the scale 

of dependence is very low compared to the size of the 

network. For scale-free networks the recovery probability 

has hardly any affect on the standard deviation. For other 

types of networks, standard deviation depends on the 

recovery probability and is almost the same for all kinds of 

weight calculation algorithms. 

Our future work will include analysis of influence 

propagation in complex networks, using other models for 

influence spreading like, SI, SIS and SIR. 
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