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Abstract – Many of the systems around us are 
connected in networks with complex patterns 
forming a complex networks. The individuals of 
these networks interact among each other tending 
to impose theirs own state to the surrounding 
individuals. Such tendencies cause dynamic 
processes in complex networks defined as 
influence spreading. There is a big diversity of 
such processes, and their research gives important 
results for predicting the speed and rate of 
spreading of many processes like natural viruses, 
computer viruses, social processes etc.   
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1. INTRODUCTION 

The necessity of modeling natural deceases spreading 
gives an outbreak of many mathematical models 
[1][2][3][4] which analytically predict the behavior of 
systems where a population is initially infected. The 
main purpose of these models is predicting the scale 
of spreading in certain moment of time, given the 
initial state and the infection and healing rates. 
Although these models are initially dedicated to 
disease spreading, they quickly become popular for 
describing computer virus spreading, viral marketing, 
gossip spreading and other social processes. 

The main issue of the analytical models of disease 
spreading is the fact that they do not put an accent on 
the connectivity of the population. Therefore we 
propose a nondeterministic model where we observe 
the population as a complex network of nodes 
connected to each other.  The infection and recovery 
rate are defined through probabilities of changing 
state of a single node, giving the opportunity to define 
more complex behavior of the model. Depending on 
the states that one node can have, several 
epidemiologic models are defined: SIR (Susceptible - 
Infected - Recovered), SIS (Susceptible - Infected - 
Susceptible) and SI (Susceptible -Infected).  

2. SIR 

Let G(D) is symmetric directed graph defined with 
the adjacency matrix D with dimensions nxn where n 

is the size of the network. D is such a matrix that 
contains value 1 on position (i,j) only if a link from i 
to j exists. At any given time, each node can be in one 
of the three possible states: S – susceptible to 
infection, I – infected and R – recovered or removed. 
Initially nodes are susceptible to infection, and due to 
the influence from the nodes they are connected to, 
there is a positive probability that each node gets 
infected. Once a node is infected it can only stay in 
the same state or become recovered with certain 
probability. The process is irreversible, meaning that 
infected node can not become susceptible, nor can 
recovered node become infected.  

Let ( ) [ ( ) ( ) ( )]S I R
i i i iS k s k s k s k=  is state vector which 

represents  the  state of node i in time k. This vector 
can contain only one entry with value 1. The other 
values equal 0. If node i is in state S at time k, then 

( ) 1S
is k =  , if i is in state I than ( ) 1I

is k =  and if it is in 
stat R than ( ) 1R

is k = . Let  
( ) [ ( ) ( ) ( ) ]S I R

i i i iP k p k p k p k=  is probability vector of 
node i at time k. Each value of this vector represents a 
probability that node i will be in one of the three 
possible states. Thus ( )S

ip k represents the probability 
that node i will be in state S at time k. Seemingly, 

( )I
ip k  and ( )R

ip k represent the probabilities of being 
in state I and R, respectably. The evolution of the SIR 
model in time is defined with the following 
equations: 

( 1) 1 ( 1) ( 1)S I R
i i ip k p k p k+ = − + − +               (1) 

  1

( 1) ( ) 1 (1 ( ))

(1 ) ( )

n
I S I
i i ij i

j

I
i

p k s k d s k

s k

β

α
=

⎡ ⎤
+ = − − +⎢ ⎥

⎣ ⎦
+ −

∏          (2) 

( 1) ( ) ( )R I R
i i ip k s k s kα+ = +                        (3) 

In these equations β  is the probability that infected 
node will infect the neighboring susceptible nodes 
and α  is the probability that infected node will 
become recovered. The probability that node i will be 
in state I at time k+1 equals the probability that the 
node will be infected if it was previously susceptible 



or the probability that the node will remain in state I 
if it was previously infected. The probability that a 
susceptible node will be infected equals 1 minus that 
probability that it will not be infected. The last 
probability is product of the probabilities that none of 
the neighbor nodes will infect the susceptible node. 
The probability that a node will be in state R at time 
k+1 equals the probability of recovery if the node was 
previously in state I or 1 if it was already in state R. 
dij in (2) is an entry of the adjacency  matrix D and 
has value 1 only if a link between the nodes of 
interest exist. Equation (3) shows that once in a state 
R, the node will remain in that state till the end of the 
process, and that does not depend on the network 
structure. Once the probabilities are determined, we 
can easily calculate the probability of state S, since 
each node must be in any of the three states, and 
therefore the sum of all probabilities equals 1. 

The definition of the model is not complete without  
laying out its initial state. Let all the nodes are 
healthy and susceptible to infection. In such case, 
according to the definition of state vector, the initial 
state of each node is (0) [1 0 0]iS = . In order to 
initiate dynamic process in the network we infect one 
node which results with a state described with the 
state vector (0) [0 1 0]iS = . After applying (1)-(3) the 
probabilities of the states are calculated, and the next 
state of the network is determined with a process 
similar to throwing a dice with three sides i.e. for 
each node a random number in the range [0,1] is 
generated, and compared to the state probabilities of 
that node. If the number is in the range [0, ( 1)S

ip k + ] 
the final state well be S, if the number is in the range 
[ ( 1)S

ip k + , ( 1)S
ip k + + ( 1)I

ip k + ], the node will be in 
state I. Otherwise it will be in state R. 

Equations (1)-(3) define a homogeneous model where 
the probability β  that a node will infect/influence 
other nodes is the same for all nodes in the network. 
However, in reality not all the nodes have the same 
importance and capability of influencing other nodes. 
Therefore, we define a heterogeneous model where 
the probability β  will be function of the node 
importance. The greater the importance of a node, the 
greater the probability that it will influence the 
neighboring nodes.  

 The main question that arises is how to determine the 
importance of a node. What we propose in this paper, 
is determining the importance of a node according to 
some of the properties of networks defined in graph 
theory [5]. The simplest form of defining the 
importance of nodes is considering their out degree 
i.e. the number of outgoing links. Nodes with large 
out degree are influent because they are connected to 
a large number of nodes in the network. However, 
this might not always be true because the degree of a 
node is a property with a local character. It does not 
give any information about the position of the node in 
the overall network. A property that has a global 
character is the node betweenness centrality [6]. This 

property is a measure of the importance of a node in a 
network, and is calculated as the fraction of shortest 
paths between node pairs that pass through the node. 
Let G is a graph given with set of nodes V and set of 
edges E. Let s and t are two nodes of the graph. stσ is 
the number of paths that pass from s to t.  Let ( )st vσ  
is the number of shortest paths that pass through the 
node v. The central betweenness of node v is: 

( )
( ) st

s v t V st
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 Once we have the importance of the nodes, the next 
step would be defining the probability of infecting the 
neighboring nodes iβ . We assign a value of  iβ  
which will be proportional to the node betweenness 
centrality. The values of iβ  are within the range 
[ minβ , maxβ ] where minβ  and maxβ  are the minimum 
and maximum values that can be assigned to any 
node in the network . Let C(i) is the betweenness 
centrality of node i defined in (4) and Cmin  and Cmax 
are the values of  betweenness centrality of the least 
and most important node in the network. The 
infection probability iβ   is defined as: 
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β β
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         (5) 

According to (5) each node gets portion of infection 
probability proportional to the node betweenness.  

3. COMPLEX NETWORKS 

Since one of our main goals is to analyze the 
behavior of different real network topologies, we use 
different types of complex networks. Complex 
networks have certain properties that make them 
different from aspect of topology. The difference 
comes from the way nodes are connected among each 
other. According to the inter-link dependences 
several types of network topologies are defined.  

3.1. Random Networks 

The simplest and most straightforward realizations 
of complex networks are random networks. These 
networks are characterized by nodes that are 
randomly connected to each other, with certain 
probability p [9]. For networks with large number of 
links, the average number of links per node is the 
same and the degree distributed follows the Poisson 
distribution. This fact shows that the probability that 
a node will have large deviation from the average 
value is exponentially small.  

3.2. Geographic Random Networks 

A special case of random networks are 
geographically random networks. These networks are 
characterized by nodes that are randomly distributed 
in the space, and are connected only to the nodes in 



their proximity. A typical example of random 
geographic network is wireless ad hoc network where 
each wireless station is connected to the stations that 
are within its range of coverage. 

3.3. Small-world Networks 

According to the link structure, small world 
networks stand between random and lattice connected 
network. They are generated by randomly replacing 
fraction of links from d-dimensional lattice structure 
[7].  If the fraction equals zero, than the network is 
lattice, and if the fraction is one, than the network is 
random network. For fraction between the extreme 
values, we get a small-world network. The name of 
these networks comes from the property that the 
average shortest distance between two nodes 
increases logarithmically with the number of nodes. 
Therefore the wider the network, it is easier to 
connect two distant nodes with just a few links. Thus, 
although the network is large, at the same time it is 
small because any node is reachable in average a few 
steps. Small world networks are composed of highly 
connected clusters, in which very few nodes provide 
connectivity to the rest of the world by setting links 
with other clusters 

3.4. Scale-free Networks 

Scale-free networks have distribution of 
connectivity that decays with power low.  The 
number of nodes with exactly k links follows a power 
law, each with a unique degree exponent. These 
networks are characterized by presence of nodes 
called hubs, with large number of links. These nodes 
are dominant in the structure of all scale-free 
networks, making each node from the network easily 
reachable from any point [7][8].  

4. RESULTS 

In the following section we present the results 
obtained by simulating the SIR model. In the 
simulations we observe four different network 
topologies: scale-free, small world, random and 
geographic random networks. Each of the networks is 
of size 500. Each simulation is executed in 10 
independent iterations, and the mean value is 
presented as a final result. One of the key elements 
that has to be defined in order to start the dynamic 
process is the initial state. In our simulation we infect 
a node with average importance. After calculating the 
importance of the nodes according to (4) they are 
sorted and the node with importance closest to the 
mean importance  is selected as an initiator of the SIR 
process. 

Fig 1 shows the number of susceptible, infected and 
recovered nodes during time for a homogeneous SIR 
model for scale-free network where the probability of 
infection is 0.1β =  and the recovery probability 

0.2α = . At the beginning all the nodes are in 

susceptible state and during time, due to the infection 
spread by the initially infected node, the number of 
infected nodes increases. As this number increases, so 
does the number of recovered nodes. After reaching a 
peak value, the number of infected nodes falls to 0 
value, and the number of recovered nodes reaches its 
stationary state. From the figure it is obvious that the 
stationary state of the homogeneous SIR model does 
not result in complete spreading of the disease. It 
reaches only portion of the nodes because the rate of 
recovery is larger than the rate of infection and after a 
certain period there are not infected nodes that can 
cause any further spread of the disease. 

 
Fig. 1 -  Number of population in state S, I and R for a 

homogeneous SIR model for 0.1β = and 0.2α =  

 
Fig. 2 -  Number of population in state S, I and R for a 
homogeneous SIR model for 0.25β = and 0.2α =  

Fig 2 shows the number of nodes in certain states for 
a homogeneous SIR model for the same network with 
probability of infection  0.25β =  and recovery 
probability 0.2α = . In this case the infection reaches 
almost every node resulting with network where most 
of the odes are recovered. It can be also seen that the 
stationary state is reached much faster than the 
previous case. 

The number of nodes in certain states for a 
heterogeneous SIR model for a scale-free network is 
shown on fig. 3. The heterogeneity is determined 
according to (2) and the range of values for infection 
probability is [0.05, 0.45]. The recovery probability 
for the model is 0.25α = . From the figure we can 
see that the peak of the number of infected nodes 
reaches higher values for a shorter period of time. 
This number is efficient for reaching stationary state 
where all the nodes are in the recovered state. 



 
Fig.3 -  Number of population in state S, I and R for a 

heterogeneous SIR model for [0.05,0.45]β = and 0.2α =  

The number of recovered nodes for different network 
topologies for homogeneous SIR model is shown on 
figure 4. The SIR model is defined with probability of 
infection 0.25β =  and recovery probability 

0.25α = . From the figure we can see that random 
networks are most prone to spreading influence 
because they reach highest percentage of recovered 
nodes. Scale-free and small world networks reach 
almost the same values of recovered nodes, however 
small world networks reach the stationary state faster 
than any topology. Geographic random networks are 
the most inert to spreading the influence both from 
aspect of coverage and speed of convergence.    

 
Fig. 4 -  Number of  recovered nodes for a homogeneous SIR 

model for 0.25β = and 0.2α =  

 
Fig. 5 -  Number of  recovered nodes for a heterogeneous SIR 

model for [0.05,0.45]β = and 0.2α =  

 

Fig 5 presents the number of recovered nodes for 
different network topologies for a heterogeneous SIR 
model. In this case all the topologies except the 
geographic random reach a complete spreading of 
influence. The speed of spreading is fastest for the 
scale-free networks. Slightly slower is the speed of 
random networks, and than follow small world 
networks. Although geographic random networks in 
the heterogeneous model spread the influence with 
greater intensity and speed than the homogeneous 
model, the influence is not spread in the entire 
network. 

5. CONCLUSION 

Results of the simulations show that the spreading of 
the SIR model depends mainly on the infection and 
recovery probabilities. When the recovery probability 
has higher value than the infection probability, the 
process is spread almost to a completion. The 
topology has also major impact on the speed and 
scale of spreading the process. Scale-free networks 
are the fastest spreading topologies whilst random 
networks reach the highest values of recovered nodes. 
In any of the observed models, the geographic 
random networks spread the SIR model with smallest 
rate and scale.  From the comparison of the results of 
homogeneous and heterogeneous SIR model we can 
conclude that the first model converges to stable state 
with lower values of recovered nodes and with lower 
speed, although the results do not differ significantly. 
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