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Abstract

We apply time-delayed feedback control to stabilise unstable periodic orbits of an
amplitude-phase oscillator. The control acts on both, the amplitude and the fre-
quency of the oscillator, and we show how the phase of the control signal influences
the dynamics of the oscillator. A comprehensive bifurcation analysis in terms of the
control phase and the control strength reveals large stability regions of the target
periodic orbit, as well as an increasing number of unstable periodic orbits caused
by the time delay of the feedback loop. Our results provide insight into the global
features of time-delayed control schemes.
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1 Introduction

Control of chaos, that means the stabilisation of unstable orbits in complex
dynamical systems using small control forces, has attracted considerable in-
terest for the last 15 years. The field is still one of the most vibrant research
areas in applied sciences. Applications cover such diverse fields like laser sys-
tems, biological networks, or chemical engineering (see for example Ref. [1]
and references therein). A very powerful method introduced by Pyragas in
Ref. [2] uses time-delayed feedback for the non-invasive control of periodic
target states. This approach is of particular interest from the plain theoretical
point of view as well, since dynamics with time delay plays an important role
in various fields of science, see Refs. [3–7].
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Recent interest in the theory of time-delayed feedback control was mainly
stimulated by analytic linear stability analysis of such systems [8,9]. In par-
ticular, it has been pointed out that certain types of periodic orbits are not
accessible for time-delayed feedback methods [9,10], a claim which has been
shown recently to be incorrect for autonomous systems [11]. In that context
a generic nonlinear oscillator subjected to time-delayed feedback control has
been introduced and the linear stability properties have been investigated in
some detail [12].

There exists virtually no systematic investigation of time-delayed feedback
control beyond the linear regime. To our best knowledge the sole result of
general applicability proposes the transition form sub- to supercritical bifur-
cations for the estimation of basins of attraction [13]. Here, we are concerned
with global features of time delay dynamics in general, and time-delayed feed-
back control in particular. To this end we present a systematic study of a
generic model for time-delayed feedback control including stability properties
of delay-induced states and of the bifurcating torus solutions, as well as global
bifurcations.

The idea of time-delayed feedback control, as considered here, is to stabilize
a certain target state (in our case a periodic orbit with a certain period),
which otherwise would be unstable. In the simplest case, which is considered
here, this unstable periodic arises from a subcritical Hopf normal from. In
applications with more complex models more complicated and even chaotic
dynamics can be expected in addition to the unstable periodic target orbit.
However our simple model contains all the necessary structure to analyse the
effects of time-delayed feedback for stabilization unstable periodic orbits.

Sec. 2 introduces the model equations and contains a discussion of basic prop-
erties. In Sec. 3 we present one-parameter bifurcation diagrams of the Pyragas
mode and the control modes including a linear stability analysis. The stability
domains in the parameter plane of control phase versus control strength are
computed in Sec. 4. Here, we identify several codimension-two points, specif-
ically Bogdanov-Takens points, as organising centres of the dynamics. We
devote Sec. 5 to a more detailed discussion of the dynamics in a neighbour-
hood of these higher codimension bifurcation points. Conclusions and outlook
are given in Sec 6.

2 The Model

We consider the control of an unstable Stuart-Landau oscillator by time-
delayed feedback,
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ż(t) = (λ + i)z(t) + (1 + iγ)|z(t)|2z(t) − K exp(iβ)[z(t) − z(t − τ)] , (1)

where z is a complex valued variable. This model, which has been introduced
recently [11], describes the amplitude and phase dynamics of a nonlinear oscil-
lator. It can be expected that Eq. (1) shows generic features since any dynam-
ical system at the onset of an oscillation can be reduced to the normal form of
a Hopf bifurcation with suitable normal form coefficients [14]. Time-delayed
feedback control is implemented by a control signal proportional to the differ-
ence between the state at time t and time t − τ in the past, z(t) − z(t − τ).
This difference becomes zero if and only if the system oscillates with period
τ . The parameter K determines the control strength while the second control
parameter β allows to change the phase relation between the oscillator and
the feedback signal. In fact, the importance of the control parameter β for
time-delayed feedback control has been pointed out recently in Ref. [11,15].
The extension from a one-parameter to a two-parameter control scheme en-
ables the stabilisation of a larger class of periodic target states. Furthermore,
the parameter β couples to the phase of the oscillator. While being of im-
portance from the plain mathematical perspective, for many physical systems
involving phase-amplitude dynamics such a phase parameter turns out to be
essential for organising the dynamics, see for example Refs. [15,16,7,17]. Fi-
nally, even an experimental realisation of such coupling schemes seem to be
feasible, either by taking a bivariate measured time series or by manipulat-
ing directly the phase in optical experiments. Even though the model (1)
looks quite simple, analytical treatment is substantially hampered due to the
time delay, in particular with regards to global bifurcations and bifurcations
of nontrivial states. Here we use for such purposes the numerical continua-
tion package DDE-BIFTOOL for delay differential equations, see Ref [18] and
Refs. [16,19,20] for applications of numerical continuation.

Without control, i.e., K = 0 the model (1) reduces to the normal form of the
subcritical Hopf bifurcation. Thus, an unstable limit cycle

zP (t) = RP exp(iΩP t) (2)

occurs for λ < 0 where amplitude RP and frequency ΩP are given by

RP =
√−λ, ΩP = 1 − λγ . (3)

In order to stabilise this unstable harmonic oscillation delayed feedback control
with a suitable choice of the control parameters K and β and the delay time τ
must be applied. In particular, we choose the delay time τ such that it satisfies
the Pyragas condition

τ =
2π

| ΩP | =
2π

| 1 − γλ | . (4)
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This condition ensures that the limit cycle (2) still solves Eq. (1) and the
control scheme is potentially non-invasive. Of course, depending on the value of
the control amplitude K and the control phase β Eq. (1) may have additional
periodic or aperiodic stationary states. Due to the rotational S1-symmetry of
the equation of motion, z(t) �→ exp(iφ)z(t), there may occur other harmonic
solutions z(t) = R exp(iΩt) where R �= RP or Ω �= ΩP . We will call such
solutions control modes because they represent harmonic oscillations induced
by the control loop. Such control modes will be one of the key ingredient to
understand the bifurcation scenario of Eq. (1).

We present a systematic bifurcation analysis of the structure and the stability
of the Pyragas mode (2) and of the control modes of Eq. (1). For the parame-
ters of the oscillator we adopt the values γ = −10 and λ = (π−4)/40 ≈ −0.02
which correspond to the period τ = 8 according to the Pyragas condition (4).
The control parameters K and β act as bifurcation parameters. The symmetry
of these variables

(K, β) �→ (−K, β + π) (5)

allows to restrict the control amplitude to positive values, K ≥ 0. However,
we do not exploit such a symmetry and consider for convenience both, positive
and negative values of K.

3 Stability of the control modes

First we consider one-parameter bifurcation diagrams, keeping one of the pa-
rameters K or β fixed, and monitor the harmonic solutions of Eq. (1) in terms
of their frequency Ω and amplitude R.

Figure 1 shows one-parameter bifurcation diagrams for fixed control strength
K = 0.15 with the control phase β as free parameter. Panel (a) shows the
frequency Ω of the periodic orbit as a function of β and panel (b) the ampli-
tude R. Due to the symmetry (5) the diagram is 2π-periodic in the control
phase β. Stable solutions are shown in thick (green) and unstable ones as thin
(magenta) curves. Additionally, higher control modes are shown as thin black
curves. Saddle-node bifurcations are marked by crosses (+), transcritical bi-
furcations by circles (◦), Hopf bifurcations by stars (∗), and Hopf bifurcations
of the trivial solution z0 = 0 by dots (•). Moreover, in brackets are the num-
bers of positive eigenvalues, which indicates the dimension of the unstable
manifold along the respective branches, where we restrict the labelling to one
fundamental 2π-interval of the phase parameter β.

One can easily identify the Pyragas mode as a horizontal line with a constant
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Fig. 1. One-parameter bifurcation diagram for K = 0.15 in the (β,Ω)-projection
(a) and (β,R)-projection (b) . Stable solutions (green/thick), unstable solutions
(magenta/thin), saddle-node bifurcations (crosses +), transcritical bifurcations (cir-
cles ◦), Hopf bifurcations (stars ∗), and Hopf bifurcations of the trivial solu-
tion (dots •). Higher control modes, which are all unstable, are indicated as thin
black curves. In brackets are the numbers of positive eigenvalues indicating the
dimension on the unstable manifold.

frequency of ΩP = π/4 ≈ 0.79 in panel (a), and as a horizontal line with
constant amplitude of RP =

√−λ ≈ 0.15 in panel (b). Additional periodic
orbits are born in pairs in saddle-node bifurcations. In our case all such saddle-
node bifurcations are accompanied by a finite-dimensional transversal unstable
manifold, i.e., the two solutions born in the saddle-node bifurcation are both
of saddle type and their unstable dimension differs by one. According to their
properties within the centre manifold we label the solution with lower number
of positive eigenvalues as node-type and the other one as saddle-type. These
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Fig. 2. One-parameter bifurcation diagram in the (K,Ω)-projection for β = 2π/3 (a)
and enlarged view in a neighbourhood of the transcritical bifurcation (b). Light blue
curves: the position of the saddle-node bifurcation in the (K,Ω)-projection param-
eterised by the control phase β, gray curve: the projection of the Hopf bifurcation
curve of the trivial solution, other symbols: same conventions as Fig. 1.

periodic orbits are due to the delayed feedback control and we call them control
modes. Normally, they have higher frequency and therefore correspond to
multiple roundtrips in the delay loop. When the Pyragas mode and the orbits
generated in such saddle-node bifurcations intersect a transcritical bifurcation
may be caused, where the stability of both states interchange. The information
contained in the two-dimensional diagrams are actually data obtained by a
projection of higher dimensional manifolds. Thus, not all such intersections
correspond to transcritical bifurcations since distinct orbits can be involved.
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In what follows we will mainly concentrate on the presentation in the (β, Ω)-
projection, like in Fig. 1, panel (a). The respective bifurcations in the (β, R)
projection, panel (b), can easily be identified by the their value of β. For
a suitable choice of parameters a particular control mode may become sta-
ble. In the saddle-node bifurcation at (β, Ω) ≈ (−0.66π , 0.13) [panel (a)]
and (β, R) ≈ (0.31 , 0.13) [panel (b)] a pair of control modes is born both
of which are initially unstable. The lower branch, the node-type control mode,
has one positive eigenvalue less than the dimension the upper branch. The
latter branch, the saddle-type control mode, stabilises in a Hopf bifurcation
at (β, Ω) ≈ (−0.1π , 0.65) as the control phase increases. Furthermore, at
(β, Ω) ≈ (0.06π , 0.78) this control mode intersects the Pyragas mode and sta-
bility is interchanged in a transcritical bifurcation (◦). Thus, the onset respec-
tively the breakdown of Pyragas control is accompanied by a locking or drift of
the frequency of the stable oscillation. As the control phase β is increased fur-
ther, the amplitude of the control mode decreases until it disappears in a Hopf
bifurcation (•) of the trivial solution at (β, Ω) ≈ (0.19π , 0.89). The node-type
control mode finally intersects the Pyragas mode as well in a second transcrit-
ical bifurcation, but none of them gains stability since the latter has already
lost its stability in a Hopf bifurcation. Eventually, the node-type control mode
stabilises in a Hopf bifurcation at (β, Ω) ≈ (1.5π , 0.11), before disappearing
in Hopf bifurcation of the trivial solution at (β, Ω) ≈ (1.6π , 1.29).

Additional control modes with shorter period are born and destroyed in saddle-
node bifurcations. In the (β, Ω)-projection they form closed loops, so-called
control mode components, with a saddle-node bifurcation at the left and the
right turning points. The upper and lower part of the component consists of a
saddle-type and a node-type mode, respectively. For the chosen values of the
fixed parameters λ and γ these components are unstable.

We supplement the one-parameter bifurcation analysis by data for fixed phase
and varying control amplitude. Figure 2 shows the result at β = 2/3π. Again,
the Pyragas mode can be identified as the horizontal line at Ω ≈ 0.79. Just as
in Fig. 1, the Pyragas mode stabilises in a transcritical bifurcation at the inter-
section with the first control mode, see enlarged view of panel (b). Additional
control modes are born in saddle-node bifurcations when the control strength
is tuned away from zero and these modes can undergo additional Hopf bifur-
cations. As can be seen from panel (a), the number of control modes increases
when |K| becomes larger, therefor substantially increasing the complexity of
the system. Furthermore, it should be noted that typically additional control
modes are unstable. Thus, increasing the control strength does not result in
increasing stability of the system.

In addition, Fig. 2 shows how the location of the saddle-node bifurcation
points (+) change when the control phase β changes. Such a representation
corresponds to the projection of a two-parameter bifurcation analysis onto
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Fig. 3. Two-parameter bifurcation diagram of the Pyragas mode in the
(K,β)-projection. Stability region of the Pyragas mode (green/shaded), stability re-
gion of the bifurcating periodic orbit (green/hatched). Transcritical bifurcation (Tr),
Hopf bifurcation (H), torus bifurcation (T), period-doubling bifurcation (PD), ho-
moclinic bifurcations (hom), 1:2-resonance (1:2), Bogdanov-Takens points (BT).

the (K, Ω)-plane. The light blue curves are the projection of the saddle-node
bifurcation manifold along the β-axis onto the (K, Ω)-plane. Similarly, the
projection of the Hopf bifurcation manifold of the trivial solution is shown in
gray. In particular, the saddle-node bifurcation of the first control mode hits
the Hopf bifurcation of the trivial solution at (K, Ω) ≈ (0.02, 0.99). This point
can be identified as a degenerate Hopf point which marks the transition from
a supercritical to a subcritical bifurcation of the trivial solution.

4 Stability domains

As already indicated in Fig. 2 a two parameter bifurcation analysis is desirable,
with respect to the control parameters K and β. Since the first control mode is
responsible for the stability changes of the Pyragas mode we will concentrate
on these two states. Figure 3 shows the complete two parameter bifurcation
diagram of the Pyragas mode and Fig. 4 of the first control mode in the (K, β)-
projection. Note the π-translational symmetry involving the parameters β
and K, according to Eq. (5). Thus, in what follows we will only discuss the
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Fig. 4. Two-parameter bifurcation diagram of the first control mode in the
(K,β)-projection. Stability region of the control mode (green/shaded), stability re-
gion of the bifurcating periodic orbit (green/hatched). Saddle-node bifurcation (S),
Hopf bifurcation of the trivial solution (H0), degenerate Hopf point (DH), and the
same notation as in Fig. 3 for the other labels.

positive half plane K ≥ 0 of the bifurcation diagram Fig. 3. Moreover, β can
be restricted to the fundamental 2π-interval.

In Fig. 3, the shaded areas indicate the regions for linear stability of the Pyra-
gas mode in the (K, β)-projection. The domain is bounded by a transcritical
bifurcation (Tr) at low values of |K|. At this boundary the Pyragas mode in-
tersects the first control mode and their stability interchanges. At large values
of |K| the stability domain is bounded by a Hopf bifurcation curve (H). The
Hopf curve terminates on the transcritical bifurcation curve in a degenerate
Bogdanov-Takens point (BT).

Beyond the Hopf boundary the constant amplitude RP of the Pyragas mode
starts to oscillate. In the frame rotating with the Pyragas frequency ΩP this
appears as a periodic orbit. The hatched areas in Fig. 3 indicate the stability
regions of the bifurcating periodic orbit. As typical for a Bogdanov-Takens
point in its vicinity the period of the bifurcating periodic orbit tends to infinity,
indicating a homoclinic bifurcation (hom), which is a global bifurcation. In
our case the homoclinic bifurcation is generated by an intersection of the
stable and the unstable manifold of the Pyragas mode. This aspect will be
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discussed in more detail in Sec. 5. Further away from the Bogdanov-Takens
point the periodic orbit destabilises in period-doubling bifurcations (PD) or
torus bifurcations (T). The curve of torus bifurcations does not show phase
locking because of the S1-symmetry of the system. But there occurs a 1:2-
resonance (1:2) where the torus curve terminates and hits the period doubling
curve as the control phase β is increased.

Additional Hopf instabilities of the already unstable Pyragas mode are indi-
cated as well (H). Two of these curves terminate at degenerate Bogdanov-
Takens points (BT) at the transcritical bifurcation. Fig. 3 shows that for
β = nπ there is no stable Pyragas mode, in accordance with analytical esti-
mates.

At the transcritical bifurcation curve the Pyragas mode exchanges stability
with the first control mode. Figure 4 shows the complete two-parameter bifur-
cation diagram of the first control mode component in the (K, β)-projection.
As before, we can just confine the discussion to the region K ≥ 0.

Modes of the first control mode component are born in pairs in saddle-node
bifurcations (S). Comparison with Fig. 2 shows how the frequency Ω of the
bifurcating control mode changes along the saddle-node curve (S). Eventually,
the modes on this first component disappear in a Hopf bifurcation (H0) of the
trivial solution. The latter bifurcation changes from supercritical to subcritical
in degenerate Hopf points (DH) where the saddle-node curve ends on (H0).
Additional Hopf (H) curves of the already unstable control mode are found as
well.

In Fig. 4, the shaded regions indicate the stability of the first control mode
and the hatched region stability of the bifurcating periodic solution. There are
two stability regions of the first control mode. For large values of the control
phase β a stable control mode bifurcates from a Hopf bifurcation (H0) of the
trivial solution. As the control strength K is increased this mode destabilises
in a Hopf bifurcation (H). For smaller values of the control phase a pair of
control modes appears in a saddle-node bifurcation (S) and one of them is
stable. Depending on the value of the control phase β the stable control mode
changes stability in a transcritical bifurcation (Tr) at the intersection with
the Pyragas mode or it destabilises in a Hopf bifurcation (H). Similar to the
bifurcation scenario of the Pyragas mode, as the control strength increases, the
bifurcating periodic solution destabilises in torus (T) or period-doubling (PD)
bifurcations, depending on the value of the control phase. Again the torus
curve ends in a 1:2-resonance (1:2) when hitting the period-doubling curve.
Close to the Bogdanov-Takens point the period of the bifurcating periodic
orbit tends to infinity, indicating a homoclinic orbit.
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Fig. 5. (a): Enlarged view of the two-parameter bifurcation diagram around the Bog-
danov-Takens points in the (K,β)-projection, including bifurcations of the Pyragas
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shading; stability region of the control mode in light green shading. Homoclinic bi-
furcations (hom) black dashed curve, and the same notation as in Fig. 3 for the
other labels. (b): Dependence of the imaginary part of the eigenvalue along the dif-
ferent Hopf bifurcation curves (H1), (H2), and (H3) (cf. panel (a)) on the control
amplitude K.

5 Dynamics close to the Bogdanov-Takens points

We now focus on the dynamics emerging from the Bogdanov-Takens points.
Figure 5(a) shows an enlarged view of the two-parameter bifurcation dia-
gram in the (K, β)-projection in a neighbourhood of the two Bogdanov-Takens
points (BT). This diagram now includes both, the bifurcations of the Pyragas
mode and of the first control mode (cf. Figs. 3 and 4).
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First, we concentrate on the Bogdanov-Takens point caused by a collision of a
Hopf bifurcation and a saddle-node bifurcation at (K, β) ≈ (−0.032 , 0.71π).
As required by bifurcation theory (see for example Ref. [14]) there emerges a
Hopf bifurcation (H3) from such a generic Bogdanov-Takens point. Figure 5(b)
shows the imaginary part ω of the associated eigenvalue along this Hopf curve.
As the Hopf bifurcation approaches the Bogdanov-Takens point, ω goes to
zero. Since ω determines the period T = 2π/ω of the bifurcating periodic
orbit, such a period tends to infinity when approaching the Bogdanov-Takens
point. Thus, we find a homoclinic bifurcation (hom) emerging from BT, which
relates to orbits with an infinite period.

We have detected a second Bogdanov-Takens point at (K, β) ≈ (0.073 , 0.97π).
In this non generic case the Bogdanov-Takens point lies on the transcriti-
cal bifurcation curve (Tr). The transcritical bifurcation is a consequence of
the Pyragas condition Eq. (4). When this condition is relaxed the transcrit-
ical bifurcation may unfold to two saddle-node bifurcations, see for example
Ref. [21]. As can be seen from Fig. 5(a) there are two Hopf curves and two
homoclinic curves emerging from this degenerated Bogdanov-Takens point.
Again Fig. 5(b) shows the imaginary part ω of the associated eigenvalue along
these Hopf curves (H1) and (H2). Both frequencies tend to zero when the
Bogdanov-Takens point is approached.

Both Bogdanov-Takens points are as well located on the boundary of the sta-
bility domains of the Pyragas and the control mode, respectively. In particular,
the degenerated Bogdanov-Takens point links to both, the stability domains
of the Pyragas and the control mode, as well as to the stability domain of the
quasiperiodic state. Thus, these higher codimension bifurcation points may be
considered as the organising centre for time-delayed feedback control in the
present setup. The stability domain of the quasiperiodic state is bounded by
a homoclinic bifurcation close to the Bogdanov-Takens point. At larger dis-
tances we find a change in the nature of such a boundary since now periodic
orbits bifurcate in period-doubling bifurcations (PD). The detailed bifurca-
tion structure around the transition region between the period-doubling and
the homoclinic bifurcations would include other bifurcations of mainly unsta-
ble periodic orbits, such as torus bifurcations and saddle-node bifurcations of
limit cycles. The detailed investigation of such features is beyond the scope of
the present study. To uncover the details a careful unfolding of the underlying
higher codimension bifurcation would be fruitful.

Here, instead, we show an example for a periodic orbit close to a homoclinic bi-
furcation for (K, β) = (0.15 , 0.68π) (cf. Fig. 6). A homoclinic bifurcation, also
known as a homoclinic connection, is a global bifurcation where the unstable
and stable manifold of a phase-space object, such as a fixed point or a periodic
solution, connect [14]. In our example the unstable and stable manifold of the
Pyragas mode connect in a homoclinic bifurcation. Panel (a) shows the time
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Fig. 6. A periodic orbit close to a homoclinic bifurcation at (K,β) = (0.15 , 0.68π):
time series in panel (a) and phase portrait in panel (b). (c): One-parameter bifur-
cation diagram of the periodic solution for K = 0.15, approaching a homoclinic
bifurcation at β ≈ 0.68π.

series of the amplitude |z(t)|, where time t is given in units of the delay time τ .
Panel (b) shows the corresponding trajectory in the (Re[z(t)], Im[z(t)])-plane,
i.e. a projection of the infinite-dimensional phase space. The trajectory can
be separated into two parts. In the first part |z(t)| is almost constant and
close to the weakly unstable Pyragas mode. Eventually, the trajectory leaves
the vicinity of the Pyragas mode by initially following the associated unstable
manifold. The trajectory approaches the Pyragas mode again via its stable
manifold. This large phase space excursion can be seen as an oscillation in
the time series in panel (a). As the periodic orbit gets even closer to the ho-
moclinic connection, the time which the trajectory spends near the Pyragas
mode increases, thus increasing its period. Panel (c) shows a one-parameter
bifurcation diagram of the periodic orbit approaching the homoclinic bifurca-
tion, where we plot the period T as a function of the bifurcation parameter β.
The periodic orbit is born in a Hopf bifurcation (∗) and as β changes, indeed,
the period grows swiftly.

6 Conclusions

We have presented a comprehensive bifurcation analysis of a generic nonlinear
oscillator model subjected to time-delayed feedback control. In particular, we
have demonstrated how the increasing complexity of the solution structure
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is organised by saddle-node bifurcations, giving rise to an increasing number
of coexisting control modes. Regions of bistability between the trivial fixed
point z = 0 and the Pyragas mode, which have been reported recently [11]
have been confirmed as well. While such a bifurcation analysis is not able to
capture, a priori, global stability properties like basins of attraction, we have
obtained a global overview of the local linear stability properties of all the
states involved in time-delayed feedback control. With regards to the stability
of the Pyragas mode, we have shown that for finite values of the phase β
a finite control domain appears. The domain is bounded by a transcritical
bifurcation and a Hopf bifurcation for small and large control amplitudes,
respectively. At the transcritical boundary a stable control mode is generated
which is reflected by a continuous shift in the period of the signal. The stability
domain of this control mode includes the case of vanishing phase, β = 0, and
the whole domain is connected to the control domain of the Pyragas mode.
Thus, an appropriate adiabatic shift of control parameters yields successful
control of the desired target state whenever a periodic output signal has been
generated. At the upper boundary of the control domain a stable quasiperiodic
torus solution is generated. On further increase of the control amplitude such a
state is destabilised in a torus- or a period doubling bifurcation, depending on
the control phase. No phase locking occurs in this model due to the rotational
symmetry. For large values of the control amplitude no stability region is
found, neither for periodic nor for quasiperiodic solutions. The sequence of
Hopf bifurcations for the Pyragas mode and the first control mode indicate
a higher dimensional unstable manifold and complex dynamical behaviour is
expected to occur.

From the plain theoretical point of view the model shows quite interesting
bifurcations of higher codimension, subjected to a symmetry which forces the
genericity of the transcritical bifurcation. We identified several codimension-
two points, such as degenerate Hopf points and Bogdanov-Takens points in
the parameter plane of control phase and control strength. Specifically, the
Bogdanov-Takens points give rise to homoclinic bifurcations and the points
serve as organising centres for the whole bifurcation diagram. Applying the
same type of analysis to other models of time-delayed feedback control can
uncover yet unknown global properties of the control scheme. But we expect
that our bifurcation diagrams exhibit a substantial degree of structural stabil-
ity. In particular, the identification of large stability regions with regards to
control parameters which are directly accessible in applications, and the tran-
sitions involved at the stability boundary and their physical manifestation can
significantly facilitate experimental confirmations.
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[17] H. Erzgräber, D. Lenstra, B. Krauskopf, A. P. Fischer, and G. Vemuri Feedback
phase sensitivity of a semiconductor laser subject to filtered optical feedback:
Experiment and theory Phys. Rev. E 76, 026212 (2007).

[18] K. Engelborghs, T. Luzyanina, and
G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis
of delay differential equations, Department of Computer Science, K. U. Leuven,
Belgium (available from http://www.cs.kuleuven.ac.be/publicaties/rapporten/
tw/TW330.abs.html), 2006.
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