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Abstract 

The bullwhip effect refers to the phenomenon of amplification and distortion of demand in a supply 

chain. By eliminating or controlling this effect, it is possible to increase product profitability 

reducing useless costs such as stock-out and obsolescence costs. The main focus of this work is to 

study a single-product serial supply chain in which a control parameter can switch the chain from a 

series of filters to a series of amplifiers of the bullwhip effect and to analyse how the optimal values 

of the parameters change when discontinuities in order policy are considered. Furthermore, it is also 

shown that the bullwhip itself it is not a good index of the chain’s performance, because it does not 

consider the oscillations that occur in the inventories, which also may affect the supply chain 

performance. 
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1. Introduction 
 

The bullwhip effect refers to a phenomenon that occurs in the supply chains when orders to the 

supplier have a larger variance than the ones from the customers, i.e. demand distortion. This 

distortion propagates upstream in an amplified form, i.e. variance amplification (Geary et al., 2006). 

 The first academic description of the bullwhip phenomenon is usually ascribed to Forrester 

(1961), who explained it as a lack of information exchange between the components of the supply 

chain and by the existence of non-linear interactions, which were difficult to deal with using 

managerial intuition. In recent years, several models have been developed for examining different 

factors that may have an impact on this effect. Metters (1997) tried to identify the magnitude of the 

problem by establishing an empirical lower bound of the bullwhip effect on profitability. Metters 

(1997) showed that by eliminating the seasonal bullwhip effect alone, one can increase the product 

profitability by 10-20%, while decreasing the bullwhip effect due to forecast error it was possible to 

increase profits by 5-10%. The combined profits by removing seasonality and forecast error, 

produced an increase in profits around 15-30%. In Chen et al. (2000) the bullwhip effect for a 

simple supply chain consisting of a single retailer and a single manufacturer was quantified. It was 

assumed that there is a correlation between the actual demand and its past values while the retailer 

applies an order policy based only on past demand. Using these assumptions, the impact of 

forecasting, lead time and information on the bullwhip effect was measured when the variance of 

the demand increases. Furthermore, Chen et al. (2000) found that, providing customer data 

information to every stage of the supply chain, the magnitude of the bullwhip effect can be 

decreased, but still exists when the demand information in each stage is centralized. With the order 

policy considered, the bullwhip is always bigger than one. The beneficial effects of information 

sharing and quality of that information in supply chains were examined for reducing the bullwhip 

effect by Dejonckheere et al. (2004) and Chatfield et al. (2004). 

  Following a different approach, Burns and Sivazlian (1979) described a supply chain as a 

sequence of amplifiers in the frequency domain using the z-transform, whereas Towill et al. (1994 

and 2003) developed a similar approach using the Laplace transform and filtering the disturbances 

in the demand signal producing a supply chain robust with respect to random variation in the 

demand. Following a systems analysis approach, Chen and Disney (2003) were able of reducing the 

bullwhip effect by controlling the order policy by using a proportional controller. An improvement 

in the cost saving due to the reduction of order variance was obtained. Soft computing methods 

were applied by Carlsson and Fullér (2001) to reduce the bullwhip effect. A policy in which orders 

were imprecise was applied. Orders were considered as intervals and the actors in the supply chain 

had to make their orders more precise as the time point of delivery got closer. In that policy crisp 
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orders were replaced by fuzzy numbers. The problem was that the fuzzy system itself was not able 

learn the membership function therefore a neural network was used to approximate the crisp value. 

Also in this case, the bullwhip was significantly reduced (Carlsson and Fullér, 2001).  

 The supply chain was also modelled using Petri Nets (Makajic-Nikolic et al, 2004). The authors 

considered a supply chain as a business process which had to be redesigned assuming that the main 

cause of the bullwhip effect was the absence of coordination in the management of the supply 

chain. Petri Nets were used as a simulation tool to support a decision-maker in choosing the best-fit 

scenario and in increasing the coordination. Genetic algorithms (GA) have also been developed to 

optimize the base-stock levels and reduce the bullwhip effect with the final objective of minimizing 

the sum of holding and shortage costs in the entire serial single-product supply chain (Disney et al., 

2000; Sudhir and Chandrasekharan, 2005; Strozzi et al., 2007) . The robustness of this approach 

with respect to changes in the supply line (Sudhir and Chandrasekharan, 2005) as well as in the 

customer demands (Strozzi et al., 2007) was also assessed. 

 The objectives of this work are to show how a simple and realistic order policy can reduce or 

amplify the bullwhip effect and the inventory oscillations in a serial single-product four echelons 

supply chain, and also to analyse the impact of discontinuities of this order policy on the bullwhip 

and maximum oscillation surfaces. Moreover, we have also analysed how this order policy may be 

optimized to reduce the bullwhip and oscillations in the inventories under different customer 

demands with and without noise. 

 
 
2. Supply chain Model 
 
In this work we consider a serial single-product distribution system of four levels similar to the one 

presented by Sterman (1989) and Mosekilde et al. (1991) in which the actors are the Factory, 

Distributor, Wholesaler and Retailer, see Figure 1. The Customer asks for the goods from to the 

Retailer which, in turns, asks for goods from the Wholesaler and so on until the orders reach the 

Factory. In the mean time the goods are going from the factory down through the chain until they 

reach the Customer. 

 

[Figure 1] 

 

 In order to simplify this production-distribution system several rules were defined by Sterman 

(1989) and Mosekilde et al. (1991): there is only one inventory at each level; the time delay from 

passing of orders and shipments from one level to the next is fixed to one week (one time period); 

the production time is taken to be two weeks, and it is assumed that the production capacity of the 
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factory has no limit; each week Customer orders goods from the Retailer, who supplies the 

requested quantity out of inventory.  

 The simulation model consists of a high-dimensional iterated map that provides the sequence of 

operations that each sector should perform. The boxes in Fig. 1 represent the state variables. Each 

variable has a letter that indicates the respective sector; thus R stands for retailer, W for wholesaler, 

D for distributor and F for factory. For example, in the wholesaler sector, WINV is the wholesaler 

inventory, WBL the wholesaler backlog of orders, WIS and WOS represent incoming and outcoming 

shipments, respectively, where WIO is the incoming orders, WED is the expected demand and WOP 

the orders placed by the wholesaler. One time step later, WOP becomes incoming orders to the 

distributor, DIO. The same notation is employed in the other sectors with the exception of the 

factory where there is a production rate, FPR, instead of placed orders and where FPD represents 

the production delay. The exogenous customer order rate is depicted by COR. 

The difference equations of the model that represent the operations conducted in each echelon 

may be written for the wholesaler as follows.  

 



 +≥+−−+

= −−−−

otherwise    

WIOWBLWISINVW   if   WIOWBLWISWINV
WINV tttttttt

t 0
1111  (1) 

1−= tt DOSWIS  (2) 



 +≥+−−+

= −−−−

otherwise    0

  if   1111 tttttttt
t

WISWINVWIOWBLWISWINVWIOWBL
WBL  (3) 

1−= tt ROPWIO  (4) 

{ }ttttt WIOWBLWISWINVWOS ++= −− 11 ,min  (5) 

 

Concerning the remaining sectors: RINV, DINV and FINV have similar expressions as in Eq. (1); 

RIS, DIS and FIS are written as Eq. (2); similar expressions as in Eq. (3) are written for RBL, DBL 

and FBL; whereas Eq. (4) holds for DIO and FIO; finally, for DOS, FOS and shipments out of 

retailer’s inventory, Eq. (5) is applied. 

 

3. The Order Policy 

The orders at the end of week t-1 arrive at the beginning of week t at the upper level. In the mean 

time the actor decides upon the outgoing shipments at week t and the goods will arrive at the 

beginning of week (t+1) at the upper level. The orders can be fulfilled after two weeks. In order to 
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have the same delay in the Factory we add the box FPD then the orders at week t-1 will go in the 

box FPD at week t and in the incoming shipments, FIS, in the week t+1, i.e. 

1−= tt FPRFPD  and 1−= tt FPDFIS  (6)  

For forecasting the expected demand we use an exponential smoothing as did Sterman (1989), 

thus 

1)1( −⋅−+⋅= ttt WEDTWIOTWED  (7) 

tWED and 1−tWED  are the expected demand at times t and t-1, respectively, WIOt is the incoming 

orders, and T )20( <≤ T  is a parameter that controls the rate at which expectations are updated. 

0=T  corresponds to stationary expectations, and 1=T  describes a situation in which the 

immediately preceding value of received orders is used as an estimate of future demand. T = 0 

means that the actor uses the long term average demand as a forecast, WIOt, whereas T=1 means 

that the actor simply passes on demand. That is the forecast in the last observed demand. The values 

of T between one and two ( 21 << T ) represent the situation when changes in demand are 

overreacted too by exponential smoothing. 

 The actors place orders by considering several variables. If we consider the stock adjustment, 

the incoming shipment, the orders placed and order that were not fulfilled at time t-1, the order 

policy of one echelon, for example wholesaler, will be: 

 

))()(,0max( 11 −− +−+−+= tttttt DBLWOPWBLWINVQWEDWOP   (8) 

 

 Wholesaler sector makes orders in accordance with the expected demand, WEDt, adding the 

quantity missing to reach the desired stock level, Q, subtracting the goods already ordered in the 

week (t-1) and that were not provided and the orders already placed. The function max is used to 

avoid negative orders. 

 Applying this order policy to a step function customer demand, the effective inventory will 

always converge (see Fig. 2) independently from the initial conditions (backlog and inventory at 

time zero). The time to reach the equilibrium depends upon T.  

 The Wholesaler orders exactly the quantity that is necessary to adjust the stock considering only 

the incoming shipments and the expected demand. When the orders reach the incoming shipments 

Wholesaler stops ordering and the desired level, Q = 14, is never reached, because shipments stop 

circulating and the desired inventory cannot be maintained to the desired level. 

 

[Figure 2] 
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 In order to reach and maintain the desired inventory, the wholesaler has to take in account the 

supply chain and to order some more goods, which move along in the chain and guarantee 

continuous availability of the stock. 

 We may try to correct this model, even when the equilibrium is reached, by taking in account 

the goods that we want circulating at time t that we will call Supply Line at time t (SLt). Since we 

do not know exactly what will be the customer demand we suppose that SLt will be the same that 

expected demand: tt WEDSL = . With this approach it is possible to define a new order policy as: 

 

)2   0max 11 )DBL(WOP)WBLWINV(QWED,(WOP tttttt −− +−+−+⋅=  (9) 

 

As one can see in Fig 3, with this policy, the effective inventory converges to the desired inventory 

Q = 14.  

 

[Figure 3] 

 

 In this case, high values of T would produce high oscillations before reaching the equilibrium 

whereas low values of T would increase the time necessary to reach equilibrium. This policy leads 

to the convergence of the stock if the customer demand converges. If the customer demand 

fluctuates around an equilibrium value, then the stock will fluctuate around another equilibrium 

value.  

 Now we want to modify the order policy with the purpose of giving different weights to the 

short and long term demand forecast, in order to analyse different behaviours provided by this 

policy. To this end, let us decompose tWED  in two parts: the first,  tWEDS , represents the short 

term customer demand forecast, while the second, tWEDL , represents the long term customer 

demand forecast and also indicates the quantity that we want to circulate (SL). It is possible then to 

write: 

 

)])()([,0max( 11 −− +−+−+⋅+= ttttttt DBLWOPWBLWINVQWEDSWEDLWOP α   (10) 

 

Good choices for tWEDS  and tWEDL , in order to preserve the convergence, are respectively: the 

last order tWIO , and the exponential smoothing 1)1( −⋅−+⋅ tt WEDLTWIOT . The parameter α,  that 

we suppose varies between 0 and 2, is the weight given by an agent of the chain to the history of the 
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demand and, at the same time, to the quantity of goods that he wants in the supply chain. Therefore 

we will be considering: 

 

tt WIOWEDS =  (11) 

1)1( −⋅−+⋅= ttt WEDLTWIOTWEDL  (12) 

 

Despite its simplicity, this model succeeds in maintaining the effective inventory (INV-BL) to a 

desired level, Q=14 (Fig 3) and its order policy is easier to apply since less information is required 

when compared with the model in Sterman (1989). 

 

4. The supply chain as a series of filters or amplifiers 

 

Figures 4-7 shown the effective inventories (inventories minus backlogs) and the orders placed, 

applying the defined order policy (Eqs. 10-12), when the customer demand is a step function, a stairs 

function, a sine function or a function correlated with its past values (Table 1): 

ttt mCORCOR ερ ++⋅= −1  (13) 

where ρ  is the correlation factor, m is a constant to avoid negative orders and tε  is a noise term 

with mean 0 and variance σ . The cases have been analysed with and without noise added to the 

demand. 

 

[Figures 4-7] 

 

In Figures 4-7, it is possible to observe how the order policy reduces the oscillations in going from 

the retailer to the factory. Moreover, by analyzing the customer demands affected by noise, it is 

possible to see that the oscillations are filtered when they reach the factory. Of course they are 

shifted in time too due to the delays in sending and receiving the orders. By increasingα , i.e. giving 

more weight to the short term forecast, the logistic chain becomes an amplifier of the customer 

demand as we can see in Fig. 8 for the case of 6.0=α . 

 

[Figure 8] 

 

 It is not the first time in the literature that this effect has been observed in logistic chains. For 

example, they were seen as series of filters (Towill and Del Vecchio, 1994) or as a series of 
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amplifiers (Burns and Sivazlian, 1979) considering different order policies. However, here we have 

shown that a unique order policy exists that is able to transform the logistic chain from a series of 

filters to a series of amplifiers and viceversa. Therefore, even if the purpose of having a supply chain 

– and the stocks at different levels- is in principle, to reduce oscillations in the customer demands, it 

is possible to see that a variation of the parameter α could transform a well behaved supply chain in 

a series of demand amplifiers. 

 

5. Bullwhip effect 

 

The amplification of the oscillations can be measured using the bullwhip index (Chen et al., 2000), 

b, defined as the quotient between the variance of the incoming order into the factory, var(FIO), and 

the variance of the customer demand, var(COR). 

In Fig. 9 the bullwhip index, b, is represented as a function of the parameters α  and T with a stair 

and a sinusoidal function representing the customer demand with and without noise. The surface 

corresponding to b=1 is also shown. This surface represents the case in which the variance of the 

customer demand does not change. The bullwhip surface has a minimum in correspondence of low 

values of α  (the weight given to the short term customer demand) and low values of T (rate of 

reaction to new orders). The minimum of the bullwhip surface corresponds to b values smaller than 

one. The same effect happens for other customer demands considered in Figs. 5, 7 and 8 (figures not 

shown). Bullwhip smaller than one means that the variance of the customer is higher than the 

variance of the factory and, therefore, the chain is acting as a filter. The optimal policy, looking to 

the bullwhip, seems to behave with a damped response when confronted with sudden changes in the 

customer requests and do not take into account short term forecast.  

 

[Figure 9] 

 

However, it seems obvious that this cannot be a good order policy. In fact, for low values of α  and 

T, the low oscillations of the incoming orders into the factory are paid for by wide oscillations in the 

inventories as it is possible to see in Fig 10, where for each echelon the maximum difference during 

a simulation run between [max(INV-BL)-min(INV-BL)] is represented for several customer demands. 

This value complements the information provided by the bullwhip index since it is possible to have b 

values far from one, but wide oscillations in the inventory. 

 

 [Figure 10] 



 9 

 

 The surfaces for the other customer demands like those of Figs 5, 7, 8 (not shown) are similar to 

the one provided by the step function. In Figure 10 one can see that the maximum oscillations, 

decrease with T only when α  is not too small (α  nearly 0.5) i.e. if the actors consider the 

adjustment of supply chain and stock. If we add noise to the demand the surface does not change 

qualitatively, i.e. the minimum, again, is for α  values between 0.4 and 0.5 and for low values of T. 

These properties do not depend from the number of weeks considered. 

 Looking to the surfaces generated in Figs. 9-10, it is possible to observe that the optimal values 

of T and α  are the ones that provide a bullwhip close to 1 and minimize the inventories oscillations. 

The maximum in the oscillations always decreases with T. As a conclusion, the optimal values will 

be T minimum (in the simulation considered the minimum value is 0.02) and α  between 0.3 and 

0.5, see Table 2 for the optimal values. In the limit, when T=0, WEDL is a constant: 

 

[ ])()( 11 −− +−+−+⋅+= tttttt DBLWOPWBLWINVQWIOconstWOP α  (14) 

 

Therefore, T = 0 means that the incoming order is not taken into account in the order forecast and 

then the supply chain will never reach the convergence to the desired level of inventory. This order 

policy will be similar to the one given by Eq. (8).  

- Independence of bullwhip from Q parameter 

For all the customer demands of Table 2 and order policy given by Eqs. (10)-(12), we have verified 

that the maxima oscillation and the bullwhip are independent from the Q parameter. As an example, 

Fig. 11 shows the bullwhip for COR3 ,COR4 , COR5, COR6 , when Q and T parameters change.  

 

[Figure 11] 

 

For this reason we did not consider the variation of the parameter Q in the former analysis of the 

optimal parameter policy. 

 

6. The impacts of order policy discontinuity  
 
In order to analyse the situation in which negative orders occur maintaining the shape of customer 

demands defined in Table 2, we have subtracted some units to the customer orders. With a shift of 

four units and α=0.3, we obtain Figs. 12-13. 
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[Figure 12-13] 

 

If we change α to 0.6 we also obtain negative orders for the same customer demands (Figs 14-15) 

but the Factory incoming orders have higher oscillations. In both cases, α=0.3 and α=0.6, it is 

possible to observe, mainly for  COR5 and COR6, that the effective inventory (INV-BL) of  the 

retailer absorbs all the fluctuations due to wrong demand forecast and this avoids the propagation of 

the oscillations along the chain.  

 

[Figures 14-15] 

 

- Bullwhip Surfaces 

The bullwhip surfaces of our order policy corresponding to customer demands COR3, COR4, COR5 

and COR6 are represented in Fig 16. Negative orders shift the bullwhip surface bellow the constant 

surface b=1 for COR5 and COR6, as can be seen when comparing with Fig. 9, whereas small 

differences can be observed for COR3, COR4. 

 

[Figure 16] 

 

- Maximum differences surfaces 

Negative orders increase the maximum differences surfaces (see Fig. 17) compared with the case in 

which negative orders are not generated (see Fig. 10). This phenomenon becomes more evident in 

presence of noise.  

 

[Figure 17] 

 

- Bullwhip as a function of T and Q 

Plotting bullwhip surface in correspondence of different values of T and Q parameters (Figs. 11 and 

18) one can see that the independence from Q values i.e. from desired inventory (supposed the same 

for each echelon) does not change. This happen for all the orders considered but we plot them only 

for the customer demands for which we would have negative orders to the factory (COR3, COR4, 

COR5, COR6). The surfaces correspondent to negative orders reach maximum values smaller than 

the ones correspondent to positive orders (Fig. 11) and they amplify noise. In two cases (COR5, 

COR6) they have completely different behaviour: the bullwhip surfaces have an opposite inclination 

even if very small (they are nearly flat). 
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[Figure 18] 

 

In order to analyse the impacts of negative orders on the optimal values of α, we have translated 

customer orders from 0 to 14 units. Optimal α values are the ones that maintain the stability of the 

supply chain: in the sense that minimise the maximum variations in the inventories (Fig. 19), and 

maintain the bullwhip close to one (Fig. 20). In order to maintain the stability of the supply chain 

when negative orders increase, it seems necessary to increase α, as can be observed in Fig. 19 (right 

column), which means giving more importance to the short term with respect to the long term 

demand. Figure 20 (right column) points also in the same direction. In both cases, for higher 

translation any value of α is not able to recover the high differences that are produced in the 

effective inventories (INV-BL), therefore these values are not significative. When the noise is 

introduced in the demand (Figs. 19-20, left column) the profile of optimal α values increases again, 

but the behaviour is not so clear. 

 

7. Conclusions and future developments 
 
In this work we have shown an order policy that, applied to the sectors of a serial single-product 

supply chain with four echelons, can reduce or amplify the bullwhip effect and the inventory 

oscillations. Despite its simplicity, this model succeeds in maintaining the effective inventory to a 

desired level and its order policy is easier to apply since less information is required when 

compared with the Sterman’s model (1989). 

Depending on the values of the model parameters, the supply chain with the order policy given by 

Eqs. 10-12 behaves as a filter or as amplifier. We have checked the robustness of this policy in 

respect to different customer demands. The surfaces of bullwhip and the ones of maximum 

oscillations of inventories have been obtained as a function of the model parameters: α (weight 

given to the history of the demand) and T (the importance given to the last incoming order). The 

bullwhip and the maximum oscillation surfaces have a similar characteristic shape for all demands. 

A conclusion that immediately emerges by analysing the reported results, is that the bullwhip alone 

does not give the real value of the global performance of the chain since low bullwhip in the 

demand can be obtained at the cost of having high oscillations in the inventories as it was already 

shown by Disney et al. (2003) and (2004). Using both, bullwhip and maximum oscillations 

surfaces, it is possible to draw conclusions about the optimal parameters for the considered policy 

(see Table 2). We considered a policy optimal when the oscillations in the inventories are minimal 

and when the bullwhip values are close to one.  
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Additionally, we checked the impact on the bullwhip and maximum oscillation surface, of 

discontinuities in the order policy. Bullwhip surfaces (Figs. 16-18) become smoother and they 

approach b=1 from below, which means that the Factory Incoming Orders variance is smaller than 

the Customer order variance. However, these smaller oscillations give rise, as a drawback, to higher 

oscillations in the effective inventory of the Retailer (Fig. 12), which absorbs all the fluctuations of 

the customer demand. This can be avoided allowing different order policies (i.e. different optimal 

parameters values α and T) for each echelon of the supply chain. To analyse the impact of negative 

orders on optimal α values we shifted the orders of the customer by several units. We observed that, 

in order to maintain small oscillations in the inventories and bullwhip values near to one, one has to 

increase α values and therefore increase the importance given to short term demand. 
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FIGURES AND TABLES 

 
 

Figure 1. Basic structure of production-distribution system with state variables and orders flow (left 
arrow) and goods flow (right arrow) in the supply chain model. 
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Figure 2. Effective inventory (inventory minus backlog) and orders obtained using policy defined 

by Eq. (8) with T=0.03 and Q=14, when the customer demand (COR1) is a step function. 
 

 
Figure 3. Effective inventory (inventory minus backlog) and orders obtained using policy defined 

by Eq. (9) with T=0.03 and Q=14, when the customer demand (COR1) is a step function. 
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Figure 4. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 

the customer demand is a step function without (COR1) and with (COR2) noise. α = 0.3, T=0.03, 
Q=14 and σ=1. 

 

 
Figure 5. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 
the customer demand is a stairs function with (COR3) and without (COR4) noise. α = 0.3, T = 0.03, 

Q=14 and σ = 1. 
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Figure 6. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 
the customer demand is a sinusoidal function without (COR5) and with (COR6) noise. α = 0.3, T = 

0.03, Q = 14 and σ = 1. 
 

 

 
Figure 7. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 
the customer demand is the correlated function given by Eq. (13) without (COR7) and with (COR8) 

noise. α =0.3, T =0.03, Q =14, ρ =0.4 and σ = 1. 
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Figure 8. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 
the customer demand is a stair function without (COR3) and with (COR4) noise. α = 0.6, T =0.03,  

Q =14 and σ = 1. 
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Figure 9. Bullwhip surfaces in (α, T) plane Q=14 and σ=1. Parameters α =[0.2-0.7] and T =[0.02-
0.2]. 
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Figure 10. Maximum oscillation = (max(INV-BL)-min(INV-BL)) surfaces. Q=14 and σ=1. 
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Figure 11. Bullwhip  surfaces. Q=14 and σ=1. 
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Figure 12. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 
the customer demand is a step function without (COR3) and with (COR4) noise. α = 0.3, T = 0.03, Q 
= 14 and σ = 1. 
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Figure 13. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 
the customer demand is a step function without (COR5) and with (COR6) noise. α  = 0.3, T = 0.03, Q 
= 14 and σ = 1. 
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Figure 14. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 

the customer demand is a step function without (COR3) and with (COR4) noise. α = 0.6, T=0.03, 
Q=14 and σ=1. 

 
Figure 15. Effective inventories and orders applying the order policy defined by Eqs. (10)-(12) when 

the customer demand is a step function without (COR5) and with (COR6) noise. α = 0.6, T=0.03, 
Q=14 and σ=1. 
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Figure 16. Bullwhip surfaces with COR3, COR4, COR5 and COR6 translated of four units (COR-4) . 
Q=14 and σ=1. 
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Figure 17. Maximum oscillation = (max(INV-BL)-min(INV-BL)) surfaces translated of four units 

(COR-4). Q=14 and σ=1. 
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Figure 18. Bullwhip  surfaces translated of four units (COR-4 ) . Q=14 and σ=1. 
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Figure 19. Optimum weight to the history of the demand, αopt, to minimize the maximum difference 
in the inventories.  
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Figure 20. Optimum weight to the history of the demand, αopt, to maintain the bullwhip close to 
one. 
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Table 1.Analysed customer demands. 

COR1 Step 

COR2 Step + noise 

COR3 Stairs 

COR4 Stairs + noise 

COR5 Sine  

COR6 Sine + noise  

COR7 Correlated demand 

COR8 Correlated + noise 

 

 

Table 2. Optimal α  parameters, i.e. minima of maxima oscillations surfaces. 
  as a function of the customer demand. 

 
Customer demand type αααα    

COR1 0.5 

COR2 0.5 

COR3 0.5 

COR4 0.5 

COR5 0.45 

COR6 0.5 

COR7 0.5 

COR8 0.45 

 

 


