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Abstract

The bullwhip effect refers to the phenomenon of Eiption and distortion of demand in a supply
chain. By eliminating or controlling this effect; is possible to increase product profitability
reducing useless costs such as stock-out and sbsalee costs. The main focus of this work is to
study a single-product serial supply chain in whactontrol parameter can switch the chain from a
series of filters to a series of amplifiers of thélwhip effect and to analyse how the optimal eslu

of the parameters change when discontinuitiesdergoolicy are considered. Furthermore, it is also
shown that the bullwhip itself it is not a good éxdof the chain’s performance, because it does not
consider the oscillations that occur in the inveley which also may affect the supply chain

performance.
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1. Introduction

The bullwhip effect refers to a phenomenon thatuoedn the supply chains when orders to the
supplier have a larger variance than the ones fileencustomers, i.e. demand distortion. This
distortion propagates upstream in an amplified faren variance amplification (Geary et al., 2006).

The first academic description of the bullwhip pbmenon is usually ascribed to Forrester
(1961),who explained it as a lack of information exchabgéveen the components of the supply
chain and by the existence of non-linear interastiovhich were difficult to deal with using
managerial intuition. In recent years, several notave been developed for examining different
factors that may have an impact on this effect.tétet(1997) tried to identify the magnitude of the
problem by establishing an empirical lower boundhs bullwhip effect on profitability. Metters
(1997) showed that by eliminating the seasonaliufl effect alone, one can increase the product
profitability by 10-20%, while decreasing the butiy effect due to forecast error it was possible to
increase profits by 5-10%. The combined profits reynoving seasonality and forecast error,
produced an increase in profits around 15-30%. herCet al. (2000) the bullwhip effect for a
simple supply chain consisting of a single retadled a single manufacturer was quantified. It was
assumed that there is a correlation between thmlagdémand and its past values while the retailer
applies an order policy based only on past deméluing these assumptions, the impact of
forecasting, lead time and information on the bhlpeffect was measured when the variance of
the demand increases. Furthermore, Chen et al.0)2fiund that, providing customer data
information to every stage of the supply chain, thagnitude of the bullwhip effect can be
decreased, but still exists when the demand infooman each stage is centralized. With the order
policy considered, the bullwhip is always biggearthone. The beneficial effects of information
sharing and quality of that information in supplyams were examined for reducing the bullwhip
effect by Dejonckheere et al. (2004) and Chatfetlel. (2004).

Following a different approach, Burns and Sivazli(1979) described a supply chain as a
sequence of amplifiers in the frequency domaingiire z-transform, whereas Towill et al. (1994
and 2003) developed a similar approach using thaka transform and filtering the disturbances
in the demand signal producing a supply chain rolath respect to random variation in the
demand. Following a systems analysis approach, @hémisney (2003) were able of reducing the
bullwhip effect by controlling the order policy lmging a proportional controller. An improvement
in the cost saving due to the reduction of ordetamge was obtained. Soft computing methods
were applied by Carlsson and Fullér (2001) to redbe bullwhip effect. A policy in which orders
were imprecise was applied. Orders were considasddtervals and the actors in the supply chain

had to make their orders more precise as the tom pf delivery got closer. In that policy crisp
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orders were replaced by fuzzy numbers. The problasthat the fuzzy system itself was not able
learn the membership function therefore a neurork was used to approximate the crisp value.
Also in this case, the bullwhip was significantbduced (Carlsson and Fullér, 2001).

The supply chain was also modelled using Petrs idakajic-Nikolic et al, 2004). The authors
considered a supply chain as a business proces$ Wwad to be redesigned assuming that the main
cause of the bullwhip effect was the absence ofdination in the management of the supply
chain. Petri Nets were used as a simulation tosufgport a decision-maker in choosing the best-fit
scenario and in increasing the coordination. Geragorithms (GA) have also been developed to
optimize the base-stock levels and reduce the bipgheffect with the final objective of minimizing
the sum of holding and shortage costs in the esaéiral single-producupply chain (Disney et al.,
2000; Sudhir and Chandrasekharan, 2005; Strozal.,eP007) . The robustness of this approach
with respect to changes in the supply line (Sudhid Chandrasekharan, 2005) as well as in the
customer demands (Strozzi et al., 2007) was alsesasd.

The objectives of this work are to show how a dargnd realistic order policy can reduce or
amplify the bullwhip effect and the inventory oafiions in a serial single-produftiur echelons
supply chain, and also to analyse the impact afotisnuities of this order policy on the bullwhip
and maximum oscillation surfaces. Moreover, we hage analysed how this order policy may be
optimized to reduce the bullwhip and oscillatioms the inventories under different customer

demands with and without noise.

2. Supply chain M odel

In this work we consider a serial single-produstmbution system of four levels similar to the one
presented by Sterman (1989) and Mosekilde et &91(Lin which the actors are the Factory,
Distributor, Wholesaler and Retailer, see Figurdle Customer asks for the goods from to the
Retailer which, in turns, asks for goods from th@dsaler and so on until the orders reach the
Factory. In the mean time the goods are going fileenfactory down through the chain until they
reach the Customer.

[Figure 1]

In order to simplify this production-distributi®ystem several rules were defined by Sterman
(1989) and Mosekilde et al. (1991): there is onhg anventory at each level; the time delay from
passing of orders and shipments from one leveheéonext is fixed to one week (one time period);

the production time is taken to be two weeks, @nsl assumed that the production capacity of the
3



factory has no limit; each week Customer ordersdgofrom the Retailer, who supplies the
requested quantity out of inventory.

The simulation model consists of a high-dimendidteaated map that provides the sequence of
operations that each sector should perform. Thedax Fig. 1 represent the state variables. Each
variable has a letter that indicates the respestator; thusk stands for retaileiV for wholesaler,

D for distributor and~ for factory. For example, in the wholesaler sec¥dNV is the wholesaler
inventory, WBL the wholesaler backlog of ordeW)SandWOSrepresent incoming and outcoming
shipments, respectively, whe¥@lO is the incoming order$VED s the expected demand aWDP
the orders placed by the wholesaler. One time kstigp, WOP becomes incoming orders to the
distributor, DIO. The same notation is employed in the other sgctoth the exception of the
factory where there is a production raéf®R, instead of placed orders and whEmRD represents
the production delay. The exogenous customer oateris depicted b OR

The difference equations of the model that repreenoperations conducted in each echelon

may be written for the wholesaler as follows.

WINY, = {WINVH +yv|s ~WBL_, -WIO, if WINV,, +WIS =WBL,_, +WIQ, "
0 otherwise

WIS =DOS_, (2)

WBL, = WBL[_1+VYIOt ~WINV,_, ~WI§ if WBL,_, +WIO, 2WINV,_, +WI§ @)
0 otherwise

WIO, = ROR_; (4)

WOS = min{WINV,_, +WIS ,WBL,_, +WIO,} (5)

Concerning the remaining sectoRINV, DINV andFINV have similar expressions as in Eq. (1);
RIS DIS andFIS are written as Eqg. (2); similar expressions a&dn (3) are written foRBL, DBL
and FBL; whereas Eg. (4) holds f®@lO andFIO; finally, for DOS FOS and shipments out of

retailer’s inventory, Eq. (5) is applied.

3. The Order Policy
The orders at the end of weekl arrive at the beginning of weglat the upper level. In the mean
time the actor decides upon the outgoing shipmehteweekt and the goods will arrive at the

beginning of weeKt+1) at the upper level. The orders can be fulfillé@ratwo weeks. In order to



have the same delay in the Factory we add theRRIX then the orders at weékl will go in the
box FPD at weekt and in the incoming shipmentaS, in the week+1, i.e.
FPD, = FPR_, andFIS, = FPD,_, (6)

For forecasting the expected demand we use an erpahsmoothing as did Sterman (1989),
thus
WED, =T WIO, + 1-T) (WED,_, 7)
WED and WED_, are the expected demand at timesdt-1, respectivelyWICQ is the incoming
orders, andl (0<T <2) is a parameter that controls the rate at whicleetgtions are updated.

T =0 corresponds to stationary expectations, and1l describes a situation in which the
immediately preceding value of received ordersgsduas an estimate of future demand= O
means that the actor uses the long term averagardeas a forecastylO, whereasl=1 means
that the actor simply passes on demand. That ifotbeast in the last observed demand. The values
of T between one and twol€T <2) represent the situation when changes in demard ar
overreacted too by exponential smoothing.

The actors place orders by considering severaabias. If we consider the stock adjustment,
the incoming shipment, the orders placed and ottur were not fulfilled at timé-1, the order

policy of one echelon, for example wholesaler, \ét

WOPR =max(QWED, +(Q-WINV, +WBL,) - (WOR, + DBL,_,)) (8)

Wholesaler sector makes orders in accordance twéhexpected demandlVED, adding the
guantity missing to reach the desired stock le@eglsubtracting the goods already ordered in the
week (t-1) and that were not provided and the orders alrgdaged. The functiomaxis used to
avoid negative orders.

Applying this order policy to a step function auster demand, the effective inventory will
always converge (see Fig. 2) independently frominiteal conditions (backlog and inventory at
time zero). The time to reach the equilibrium dejseaponT.

The Wholesaler orders exactly the quantity thateisessary to adjust the stock considering only
the incoming shipments and the expected demandnWhtgeorders reach the incoming shipments
Wholesaler stops ordering and the desired leYet, 14, is never reached, because shipments stop

circulating and the desired inventory cannot bentadied to the desired level.

[Figure 2]



In order to reach and maintain the desired inwgntive wholesaler has to take in account the
supply chain and to order some more goods, whiclwemalong in the chain and guarantee
continuous availability of the stock.

We may try to correct this model, even when theildagium is reached, by taking in account
the goods that we want circulating at tingat we will call Supply Line at time S(). Since we
do not know exactly what will be the customer dechare suppose th&L; will be the same that

expected deman&l, =WED, . With this approach it is possible to define a raeder policy as:

WOP = max(0, 2[WED, +(Q -WINV, +WBL, ) -(WOP._, + DBL,_,)) (9)

As one can see in Fig 3, with this policy, the etifee inventory converges to the desired inventory
Q=14

[Figure 3]

In this case, high values @fwould produce high oscillations before reaching dguilibrium
whereas low values &f would increase the time necessary to reach equitib This policy leads
to the convergence of the stock if the customer atemconverges. If the customer demand
fluctuates around an equilibrium value, then thelstwill fluctuate around another equilibrium
value.

Now we want to modify the order policy with therpase of giving different weights to the
short and long term demand forecast, in order @lyae different behaviours provided by this
policy. To this end, let us decompo®éED, in two parts: the first, WEDS, represents the short

term customer demand forecast, while the secOMBDL,, represents the long term customer

demand forecast and also indicates the quantitywbavant to circulateSD). It is possible then to

write:

WOP = max(,WEDL, +a QWEDS + (Q -WINV, +WBL,) - (WOP., + DBL,_,)]) (10)

Good choices foWEDS and WEDL,, in order to preserve the convergence, are raspgctthe
last orderWIQ, , and the exponential smoothiigWIO, + (1-T) WEDL,_, . The parametes, that

we suppose varies between 0 and 2, is the weigahdiy an agent of the chain to the history of the
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demand and, at the same time, to the quantity ofigthat he wants in the supply chain. Therefore

we will be considering:

WEDS =WIO, (11)
WEDL, =T WIO, + 1-T) WEDL,_, (12)

Despite its simplicity, this model succeeds in reiming the effective inventoryiNV-BL) to a
desired level, Q=14 (Fig 3) and its order policea&sier to apply since less information is required

when compared with the model in Sterman (1989).

4. The supply chain asa series of filtersor amplifiers

Figures 4-7 shown the effective inventories (ineeies minus backlogs) and the orders placed,
applying the defined order policy (Eqs. 10-12), wihige customer demand is a step function, a stairs
function, a sine function or a function correlateith its past values (Table 1):

COR = p[COR_, + m+¢, (13)

where p is the correlation factom is a constant to avoid negative orders ands a noise term

with mean 0 and variance . The cases have been analysed with and withoserexdded to the

demand.

[Figures 4-7]

In Figures 4-7, it is possible to observe how thdeo policy reduces the oscillations in going from
the retailer to the factory. Moreover, by analyzihg customer demands affected by noise, it is
possible to see that the oscillations are filtendten they reach the factory. Of course they are
shifted in time too due to the delays in sendind @teiving the orders. By increasmgi.e. giving

more weight to the short term forecast, the logistiain becomes an amplifier of the customer

demand as we can see in Fig. 8 for the cageof . 06

[Figure 8]

It is not the first time in the literature thaigheffect has been observed in logistic chains. For

example, they were seen as series of filters (Toavid Del Vecchio, 1994) or as a series of



amplifiers (Burns and Sivazlian, 1979) consideriiiferent order policies. However, here we have
shown that a unique order policy exists that iedbltransform the logistic chain from a series of
filters to a series of amplifiers antteversa Therefore, even if the purpose of having a suppBbin

— and the stocks at different levels- is in priheipo reduce oscillations in the customer demaitds,
is possible to see that a variation of the parametuld transform a well behaved supply chain in

a series of demand amplifiers.

5. Bullwhip effect

The amplification of the oscillations can be meaduusing the bullwhip index (Chen et al., 2000),
b, defined as the quotient between the varianclefricoming order into the factoryar(FIO), and

the variance of the customer demavar(COR)

In Fig. 9 the bullwhip indexb, is represented as a function of the parametermnd T with a stair
and a sinusoidal function representing the custoteenand with and without noise. The surface
corresponding td=1 is also shown. This surface represents the icasdich the variance of the
customer demand does not change. The bullwhipitias a minimum in correspondence of low
values ofa (the weight given to the short term customer dethamd low values oT (rate of
reaction to new orders). The minimum of the bullvburface corresponds lbovalues smaller than
one. The same effect happens for other customeani@snconsidered in Figs. 5, 7 and 8 (figures not
shown). Bullwhip smaller than one means that theamae of the customer is higher than the
variance of the factory and, therefore, the chaiadting as a filter. The optimal policy, lookirmg t
the bullwhip, seems to behave with a damped regpahen confronted with sudden changes in the

customer requests and do not take into account srar forecast.

[Figure 9]

However, it seems obvious that this cannot be a gwoder policy. In fact, for low values af and

T, the low oscillations of the incoming orders itibe factory are paid for by wide oscillations i th
inventories as it is possible to see in Fig 10, neHer each echelon the maximum difference during
a simulation run betweemjaxINV-BL)-min(INV-BL)] is represented for several customer demands.
This value complements the information providedhsybullwhip index since it is possible to hdve

values far from one, but wide oscillations in theantory.

[Figure 10]



The surfaces for the other customer demands hi@set of Figs 5, 7, 8 (hot shown) are similar to
the one provided by the step function. In Figurech@ can see that the maximum oscillations,
decrease withT only when a is not too small & nearly 0.5) i.e. if the actors consider the
adjustment of supply chain and stock. If we adds@dd the demand the surface does not change
qualitatively, i.e. the minimum, again, is far values between 0.4 and 0.5 and for low valu€es. of
These properties do not depend from the numbeleeks/considered.

Looking to the surfaces generated in Figs. 9113, possible to observe that the optimal values
of Tanda are the ones that provide a bullwhip close tod mmimize the inventories oscillations.
The maximum in the oscillations always decreasdls WiAs a conclusion, the optimal values will
be T minimum (in the simulation considered the minimuadue is 0.02) andr between 0.3 and

0.5, see Table 2 for the optimal values. In thet)imhenT=0, WEDL is a constant:
WOP = const+ a [WIO, +(Q —~WINV, +WBL,) - (WOPR_, + DBL,_,)] (14)

Therefore,T = 0 means that the incoming order is not taken aatwount in the order forecast and
then the supply chain will never reach the convecgeo the desired level of inventory. This order
policy will be similar to the one given by Eq. (8).

- Independence of bullwhip from Q parameter

For all the customer demands of Table 2 and ordkecypgiven by Egs. (10)-(12), we have verified
that the maxima oscillation and the bullwhip aréependent from th® parameter. As an example,
Fig. 11 shows the bullwhip f@OR; COR, , COR; COR; , whenQ andT parameters change.

[Figure 11]

For this reason we did not consider the variatibthe parametef) in the former analysis of the

optimal parameter policy.

6. Theimpacts of order policy discontinuity

In order to analyse the situation in which negativéers occur maintaining the shape of customer
demands defined in Table 2, we have subtracted swite to the customer orders. With a shift of
four units anda=0.3, we obtain Figs. 12-13.



[Figure 12-13]

If we changea to 0.6 we also obtain negative orders for the sanstomer demands (Figs 14-15)
but the Factory incoming orders have higher odmlte. In both casesy=0.3 anda=0.6, it is
possible to observe, mainly for C@RBnd COR, that the effective inventory (INV-BL) of the
retailer absorbs all the fluctuations due to wrdeghand forecast and this avoids the propagation of

the oscillations along the chain.

[Figures 14-15]

- Bullwhip Surfaces

The bullwhip surfaces of our order policy corresgiog to customer demands CQRROR,, COR,
and COR are represented in Fig 16. Negative orders sheftotlwhip surface bellow the constant
surfaceb=1 for COR and COR, as can be seen when comparing with Fig. 9, wkeseaall
differences can be observed for COBOR,.

[Figure 16]

- Maximum differences surfaces
Negative orders increase the maximum differenceaces (see Fig. 17) compared with the case in
which negative orders are not generated (see Big.This phenomenon becomes more evident in

presence of noise.

[Figure 17]

- Bullwhip as a function of T and Q

Plotting bullwhip surface in correspondence ofeliént values of T and Q parameters (Figs. 11 and
18) one can see that the independence from Q vetudsom desired inventory (supposed the same
for each echelon) does not change. This happeallftiie orders considered but we plot them only
for the customer demands for which we would havgatiee orders to the factory (CQRCOR;,
CORs, COR;). The surfaces correspondent to negative ordachrenaximum values smaller than
the ones correspondent to positive orders (Fig.aht) they amplify noise. In two cases (GOR
COR;) they have completely different behaviour: thellhip surfaces have an opposite inclination

even if very small (they are nearly flat).
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[Figure 18]

In order to analyse the impacts of negative ordershe optimal values af, we have translated
customer orders from O to 14 units. Optimmayalues are the ones that maintain the stabilitthef
supply chain: in the sense that minimise the marinvariations in the inventories (Fig. 19), and
maintain the bullwhip close to one (Fig. 20). Ier to maintain the stability of the supply chain
when negative orders increase, it seems necessargrease, as can be observed in Fig. 19 (right
column), which means giving more importance to shert term with respect to the long term
demand Figure 20 (right column) points also in the sameedion In both cases, for higher
translation any value oft is not able to recover the high differences that produced in the
effective inventories INV-BL), therefore these values are not significatwhen the noise is
introduced in the demand (Figs. 19-20, left coluime) profile of optimab values increases again,

but the behaviour is not so clear.

7. Conclusions and futur e developments

In this work we have shown an order policy thaflegal to the sectors of a serial single-product
supply chain with four echelons, can reduce or #wnphe bullwhip effect and the inventory
oscillations. Despite its simplicity, this modelcseeds in maintaining the effective inventory to a
desired level and its order policy is easier tolyppnce less information is required when
compared with the Sterman’s model (1989).
Depending on the values of the model parameteessupply chain with the order policy given by
Egs. 10-12 behaves as a filter or as amplifier. Maee checked the robustness of this policy in
respect to different customer demands. The surfaéeBullwhip and the ones of maximum
oscillations of inventories have been obtained dsnation of the model parametera: (weight
given to the history of the demand) afdthe importance given to the last incoming ordé&he
bullwhip and the maximum oscillation surfaces hav@milar characteristic shape for all demands.
A conclusion that immediately emerges by analysimgreported results, is that the bullwhip alone
does not give the real value of the global perfaoroeaof the chain since low bullwhip in the
demand can be obtained at the cost of having heghllations in the inventories as it was already
shown by Disney et al. (2003) and (2004). Usinghpdiullwhip and maximum oscillations
surfaces, it is possible to draw conclusions alloeitoptimal parameters for the considered policy
(see Table 2)We considered a policy optimal when the oscilladian the inventories are minimal
and when the bullwhip values are close to one.
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Additionally, we checked the impact on the bullwhmd maximum oscillation surface, of
discontinuities in the order policy. Bullwhip suwcks (Figs. 16-18) become smoother and they
approachb=1 from below, which means that the Factory Incgr@rders variance is smaller than
the Customer order variance. However, these smadlaghations give rise, as a drawback, to higher
oscillations in the effective inventory of the Rega(Fig. 12), which absorbs all the fluctuatiawfs

the customer demand. This can be avoided allowifigreint order policies (i.e. different optimal
parameters valueg andT) for each echelon of the supply chain. To anatiigempact of negative
orders on optimak values we shifted the orders of the customer bgrsg units We observed that,

in order to maintain small oscillations in the int@ies and bullwhip values near to one, one has to

increasen values and therefore increase the importance giovshort term demand.
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FIGURES AND TABLES
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Figure 1. Basic structure of production-distribat®ystem with state variables and orders flow (left
arrow) and goods flow (right arrow) in the supphat model.
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Figure 5. Effective inventories and orders applyimg order policy defined by Egs. (10)-(12) when

the customedemand is a stairs function witGQRs) and without CORy) noise.a = 0.3,T = 0.03,

Q=14 ando = 1.
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Figure 6. Effective inventories and orders applyimg order policy defined by Eqgs. (10)-(12) when

the customer demand is a sinusoidal function witll6®OR;) and with COR;) noise.a = 0.3,T =

0.03,Q=14 ando = 1.
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Figure 7. Effective inventories and orders applyimg order policy defined by Egs. (10)-(12) when
the customer demand is the correlated functionngbseEq. (13) withoutQOR;) and with CORs)
noise.a =0.3,T =0.03,Q =14,p=0.4 ando = 1.
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Figure 8. Effective inventories and orders applyimg order policy defined by Eqgs. (10)-(12) when
the customer demand is a stair function with@®R;) and with CORy) noise.a = 0.6, T =0.03,
Q=14 ando = 1.
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Figure 9. Bullwhip surfaces im( T) planeQ
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Mase. diff.

Figure 10. Maximum oscillation = (ma{V-BL)-min(INV-BL)) surfacesQ=14 ando=1.
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Figure 11. Bullwhip surfaceQ=14 ando=1.
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Figure 12. Effective inventories and orders appytime order policy defined by Egs. (10)-(12) when

the customer demand is a step function with@@Rs) and with CORy) noise.a= 0.3,T = 0.03,Q
=14 ando = 1.
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Figure 13. Effective inventories and orders appytime order policy defined by Egs. (10)-(12) when

the customer demand is a step function with@@) and with CORs) noise.a = 0.3,T = 0.03,Q

=14 ando= 1.
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Figure 14. Effective inventories and orders appytime order policy defined by Eqgs. (10)-(12) when
the customer demand is a step function with@@R;) and with COR) noise.a = 0.6,7=0.03,
Q=14 ando=1.
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Figure 15. Effective inventories and orders appytime order policy defined by Eqgs. (10)-(12) when
the customer demand is a step function with@@R;) and with COR;) noise.a = 0.6,7=0.03,
Q=14 ando=1.
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COR,

26

Figure 16. Bullwhip surfaces wititOR;, COR;, COR; andCOR; translated of four units<QOR4) .
Q=14 ando=1



COR

Max. diff.

Figure 17. Maximum oscillation = (mai{V-BL)-min(INV-BL)) surfaces translated of four units
(COR4). Q=14 ando=1.
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Figure 18. Bullwhip surfaces translated of fouitsi(lCOR4 ) . Q=14 ando=1.
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Figure 19. Optimum weight to the history of the @, a,,, to minimize the maximum difference
in the inventories.
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Figure 20. Optimum weight to the history of the @@, a,,, to maintain the bullwhip close to

one.
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Table 1.Analysed customer demands.

COR Step

COR Step + noise
CORs Stairs

COR, | Stairs + noise
COR; | Sine

COR Sine + noise
COR Correlated demand

COR; Correlated + noise

Table 2. Optimalkr parameters, i.e. minima of maxima oscillationgaes.
as a function of the customer demand.

Customer demand type a
COR 0.5
COR 0.5
CORs 0.5
CORy 0.5
COR 0.45
CORs 0.5
COR 0.5
COR; 0.45




