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a b s t r a c t

As a first step of an exhaustive assessment of wind energy potential over Europe, here, we provide a uni-
fied description of the wind speed probability distribution both over sea and land. We evaluated surface
wind velocity records of the ERA-40 data base covering 44 years with a temporal resolution of 6 hours.
We tested the well known distribution functions (Rayleigh, binormal, Weibull, lognormal etc.) and
observed that the popular Weibull function performs supremely, however, it fails at many locations over
land. We found that the generalized gamma distribution, which has independent shape parameters for
both tails, provides an adequate and unified description almost everywhere. The geographical distribu-
tion of the fitted parameters reveals the possible climatological origin of different wind speed
distributions.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy is the world’s fastest growing renewable source of
electricity; the global capacity has more than quadrupled between
2000 and 2006 [1]. The atmospheric flows are strongly volatile, and
therefore, the average wind speed at a given location is a very poor
predictor of the energy output of a wind turbine. The basic require-
ment for wind power estimates is an adequate characterization of
the empirical probability distribution of wind speeds since wind
direction is less important because of the well developed methods
of yaw control for modern turbines [2]. The statistical description
is highly simplified when a measured histogram can be accurately
fitted by an analytical probability density function (PDF) with a
few parameters.

The traditional approach of modeling the wind speed PDF is
based on the Rayleigh and the more flexible Weibull distributions
[2–8]. However, several authors noted that Weibull fits of empiri-
cal data have low quality at several locations, mostly over land
[10]. Various analytical forms of skewed distributions were pro-
posed as possible alternatives, such as the lognormal [11,12],
square root normal [13,14], chi [11], inverse Gaussian [15], gener-
alized gamma [11], generalized extreme value [16] or extended
exponential functions [17,18].

In this work, we report on a detailed analysis of surface wind
speed distribution over Europe. The main goal was to find an effec-
tive and optimal description of the PDF both for terrestrial and sea
surface locations. We evaluated wind data from the ERA-40 re-
analysis [19] of the European Centre for Medium Range Weather
Forecasts (ECMWF). Our tests unambiguously demonstrate that
the generalized gamma (GG) distribution provides an improved
fit for an overall statistical characterization of surface wind speed.
We show that the GG fit outperforms the Weibull function, espe-
cially at the large speed tails, which is the most relevant region
with respect to wind power estimates.

After the description of the data and the methods used, we sum-
marise tests with various distributions by fitting empirical wind
speed histograms. Besides the fundamental Rayleigh, the com-
monly used Weibull and lognormal distributions, we show the re-
sults for the generalized gamma distribution and demonstrate its
superiority. Next, we briefly discuss the spectral properties of wind
speed records and analyse wind speed fluctuations by removing
seasonal periodicities from the original time series. A summary
and conclusions are given in the final section.

2. The data and methods

We evaluated the ECMWF’s ERA-40 re-analysis data [19] con-
sisting of the u (eastward) and v (northward) orthogonal compo-
nents of the horizontal wind field at 10 m above ground level.
The data base covers a time period of 44 whole years between 1
September 1958 and 31 August 2002. Four instantaneous values
are recorded each day for the main synoptic hours of 00, 06, 12
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and 18 UTC at each location. The spatial resolution is 1� � 1� (lat/
long), and a given value for an atmospheric variable is considered
to be representative for the whole cell. Our analysis is restricted to
a geographical area covering Europe: 2501 grid points between
35�N and 75�N latitude and 20�W and 40�E longitude.

The main quantity of interest in this study is the scalar wind
speed s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. For each grid point, the standard statistical
characteristics (mean, standard deviation, skewness and kurtosis)
are determined, and then the Rayleigh, binormal, Weibull, lognor-
mal and generalized gamma (GG) distributions are fitted by the
standard method of maximum likelihood estimates [5,20]. No pre-
processing (filtering or removal of seasonal periodicities) was
implemented prior to the computations above. The goodness of
fit is characterized by computing the coefficient of determination
R2 (the fraction of the total squared error that is explained by the
model). The different models are evaluated by comparing the
unexplained percentage variance 100ð1� R2Þ for a given data set.

In order to characterize the temporal behavior of wind speed re-
cords, frequency domain analysis is performed by the usual Fourier
spectral method. The effects of seasonal periodicities are evaluated
by removing the long range average values for a given hour of a gi-
ven calendar day from the original time series, as usual.

The average value �s and standard deviation rs of ERA-40 surface
wind speeds computed over the whole period of 44 years (Fig. 1)
illustrate the gross features of wind climatology over Europe. The
strong coupling between the values of average speed and standard
deviation is apparent, the coefficient of variation is around
rs=�s � 0:5, except for a few isolated regions (for example around
Corsica).

3. Models for wind speed histograms

3.1. Rayleigh distribution

The most transparent model for scalar wind speed distribution
is based on the assumptions that the orthogonal u and v compo-
nents are independent and identically distributed (iid) Gaussian
random variables with zero means and equal standard deviations
of s0=

ffiffiffi
2
p

(we adopt this notation to get simpler mathematical for-
mulae below). Of course, all the higher moments (skewness, kurto-
sis etc.) are identically zero. In this case, s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

obeys
Rayleigh probability density distribution [21] of the functional
form

PRðs; s0Þ ¼
2
s0

s
s0

� �
exp � s

s0

� �2
" #

; ð1Þ

where the only free parameter is s0 (the so called scale parameter).
A trivial consequence of the basic assumptions behind a Ray-

leigh distribution is that the mean vector wind should be zero as

well. However, it is well known that the long range vectorial aver-
ages are significantly different from zero, in particular over the
oceans (see e.g. [22,23]). Actually, these nonzero values define
the prevailing wind systems (e.g. trade winds). This is the first rea-
son why the Rayleigh distribution has a limited applicability, espe-
cially for sea winds [8,9].

The mean vector wind, however, is often close to zero over land
[22,23]. Therefore, a next plausible test on the validity of the basic
assumptions is to determine the normalized third and fourth cen-
tral moments, the skewness (Sk) and kurtosis (K) for the individual
wind components u and v:

SkðxÞ �
Pn

i¼1ðxi � �xÞ3

nr3
x

; KðxÞ �
Pn

i¼1ðxi � �xÞ4

nr4
x

� 3; ð2Þ

where xi is either ui or vi, and n is the number of observations. Eq.
(2) are not exact equalities because they are biased estimators of
skewness and kurtosis, but in this case, the sample size is very large
(n ¼ 64240) and Eq. (2) can be considered to be very good approx-
imations. The results are shown in Fig. 2. The maps clearly illustrate
that very few geographical locations exhibit a pure Gaussian prob-
ability distribution (Sk ¼ 0;K ¼ 0) for the individual wind vector
components.

The standard method to test interdependence of the compo-
nents u and v is based on computing the correlation coefficient
ruv defined as

ruv ¼
Pn

i¼1ðui � �uÞðvi � �vÞ
ðn� 1Þrurv

; ð3Þ

where an overline indicates average value, and ru and rv are the
corresponding standard deviations, as before. Fig. 3 shows that
the assumption of independence fails in general; strong correlations
of magnitude 0.6–0.8 are present at several geographical locations.
(Note that ruv � 0 does not necessarily mean statistical
independence.)

Nonzero correlations are usually taken into account by consid-
ering joint probability distributions. For example, when u and v are
assumed to be Gaussian random variables with mean values �u and
�v, standard deviations ru and rv, and correlation coefficient ruv,
then the joint PDF can be written as

PðU;VÞ ¼ 1
2prurv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

uv

p exp �U2 � 2ruvUV þ V2

2ð1� r2
uvÞ

 !
; ð4Þ

where U ¼ ðu� �uÞ=ru and V ¼ ðv� �vÞ=rv denote standardized
variables.

There are two plausible methods to obtain standardized veloc-
ity components U and V. First, the mean values �u and �v can be com-
puted over the whole length of the time series assuming a well
defined prevailing wind. The second way is to consider velocity

Fig. 1. (a) Average value, and (b) standard deviation of ERA-40 surface wind speeds in the period 1958–2002, in units of m/s. Note that the color scales are different by a factor
of 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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fluctuations around the annual periodic background signal, which
is determined by the average value for a given synoptic hour and

given calendar day. (For further discussion see Section 4). We
tested both cases.

Fig. 4 illustrates the quality of the bivariate Gaussian model fits
for the two methods of standardization. The regions of relatively
low values of the unexplained precentage variance 100ð1� R2Þ
indicate where the model performs well. We note that most of
the deviations between the model and data are due to a higher
empirical probability of large wind speeds with respect to a Gauss-
ian distribution. At several locations, the exponential tails
PðsÞ / e�s for large values of s provide a better fit than the Gaussian
decay PðsÞ / e�s2 . Higher values of kurtosis in Fig. 2 refer to this
feature as well.

In view of the above results, we should not expect the Rayleigh
model to provide an adequate universal description for the empir-
ical wind speed distributions.

3.2. Weibull distribution

The most widely accepted model for wind speed probabilities is
the two parameter Weibull distribution [24]:

Fig. 2. Geographical distribution of empirical skewness Sk and kurtosis K (see Eq. 2) for the wind components u and v. (a) SkðuÞ, (b) KðuÞ, (c) SkðvÞ and (d) KðvÞ. White color
emphasizes Sk ¼ 0 and K ¼ 0 levels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Correlation coefficient ruv (see Eq. 3) for the u and v wind velocity compo-
nents. White color emphasizes ruv ¼ 0 level. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Unexplained percentage variance 100ð1� R2Þ of joint Gaussian PDF fits by Eq. (4). (a) Full time average values removed. (b) Dalily and annual periodic cycle removed.
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PWðs; s0; kÞ ¼
k
s0

s
s0

� �k�1

exp � s
s0

� �k
" #

; ð5Þ

where s0 and k denote the scale and the shape parameters, respec-
tively. It is easy to see that the Rayleigh distribution Eq. (1) is a
special case of the Weibull distribution with k � 2, while k � 1
gives the simple exponential distribution. The Weibull PDF Eq. (5)
can be derived theoretically as a form of extreme value distributions
[25], and it is the most popular model for failure rate distributions
[21,24]. In the context of wind speed histograms, we can rather
consider the functional form Eq. (5) as a generalization of the
Rayleigh distribution, which provides an increased flexibility to fit
empirical data. The properties of the Weibull distribution have
been thoroughly studied and numerous studies show that it works
well for modeling wind speeds at several locations [2–9,26,13,27–
32].

Examples of Weibull fits are shown in Fig. 5, where the geo-
graphical locations were chosen to illustrate particularly good
and poor fits. In general, the Weibull PDF is a reasonably good
model over the ocean and seas, however, histograms for large areas
over land can be fitted with rather large errors. Fig. 5b illustrates
that neither the central part nor the large speed tail of the empir-
ical histograms are close enough to a Weibull distribution. The lat-
ter is more problematic in practice because wind energy is only
produced above the cut in speed of wind turbines (typical values
are 3–5 m/s), and therefore, an adequate fit of the large speed tail
is crucial for wind energy estimates.

The geographical distribution of fitted Weibull parameters is
shown in Fig. 6. The scale parameter s0 shows almost the same pat-
tern as the mean wind speed �s in Fig. 1a. This is plausible, because
the mean value of a Weibull distribution is given by s0Cð1þ 1=kÞ,

where the correction factor of the Gamma function changes in
the interval C 2 ½0:888;0:911� for the fitted shape parameter re-
gime k 2 ½1:4;2:6�. The shape parameter k exhibits a more interest-
ing spatial pattern in Fig. 6b. Lower numerical values indicate a
slower decay of the large speed tail, and such shape is characteris-
tic of areas of very low average speed �s or scale parameter s0; how-
ever, the relationship is not entirely strict.

A straightforward generalization of the two parameter Weibull
PDF is the three parameter Weibull distribution

PWðs; l; s0; kÞ ¼
k
s0

s� l
s0

� �k�1

exp � s� l
s0

� �k
" #

; ð6Þ

where the third (location) parameter l shifts the Weibull peak hor-
izontally. This helps to model wind speed histograms at calm local
climates, where s ¼ 0 has a significant positive probability. How-
ever, such places are exceptional, and therefore, the general
improvement of fits by Eq. (6) is marginal.

Since the Weibull distribution does not provide a universally
good description of wind speeds everywhere, we tested other
empirical distributions too. For example, the lognormal distribu-
tion (lnðsÞ exhibits Gaussian PDF) was extensively used to fit wind
speed histograms over land [12,30]. Our results show that the log-
normal distribution is an inappropriate model over most of the
areas examined. In general, a lognormal distribution decays much
slower towards high wind speeds than the empirical data. Never-
theless, at a few gridpoints (e.g. northern Germany), we found that
the lognormal model fits better than the Weibull, see Fig. 7. A typ-
ical histogram at these gridpoints is characterized by a sharp peak
and an exponential like right tail, which is closer to the lognormal
behavior (Fig. 7).

Fig. 5. Normalized histogram of wind speed s at two distinct locations: Atlantic Ocean (66�N 4�W, dark blue), and northern Germany (52�N 11�E, light brown). Maximum
likelihood Weibull fits are shown with straight lines. (a) Linear scale, and (b) semi-log scale. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Geographical distributions of the (a) scale s0 and (b) shape k parameters of maximum likelihood Weibull fits (see Eq. (5)).
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3.3. Generalized gamma distribution

In order to overcome the constraint that both tails of a Weibull
peak are described by a single shape parameter k, we can further
generalize Eq. (5) to get the generalized gamma (GG) distribution,
also suggested by Auwera et al. [11]:

PGGðs; s0; k; �Þ ¼
k

s0Cð�Þ
s
s0

� ��k�1

exp � s
s0

� �k
" #

; ð7Þ

where the Gamma correction Cð�Þ is required for normalization, and
the new parameter � improves the shape flexibility. Special cases
are � � 1 (the original Weibull distribution), and k � 1 which gives
the gamma distribution. The lognormal distribution can also be ob-
tained as a limiting distribution when �!1 [33]. The fixed param-
eter value k � 2 defines a subfamily of GG distributions, which is
known as the generalized normal (GN) distribution. The GN distri-
bution is itself a flexible family and includes the Half normal
(� ¼ 1=2), Rayleigh (� ¼ 1), Maxwell–Boltzmann (� ¼ 3=2) and chi
(� ¼ n=2; n ¼ 1;2;3; . . .) distributions.

The function PGG (Eq. (7)) has a single maximum (mode m) at

m ¼ s0 �� 1
k

� �1
k

: ð8Þ

The effects of the two shape parameters k and � cannot be fully sep-
arated, but nevertheless, the asymptotic behavior on the left side is
a power law with exponent q ¼ �k� 1, while it is a stretched expo-
nential on the right:

PGGðsÞ / sq 0 6 s� m;

PGGðsÞ / e�ðs=s0Þk s	 m:
ð9Þ

The a-th non-central moment of the GG distribution can be ob-
tained easily:

hsai ¼ sa
0
Cð�þ a=kÞ

Cð�Þ : ð10Þ

An important property of GG distributions is that the family is
closed under power transformations. That is, if s > 0 obeys
PGGðs; s0; k; �Þ, then the corresponding PDF for z ¼ sp has the form
PGGðz; sp

0; k=p; �Þ [33]. This property can be immediately exploited
for estimating potential wind power, since it is proportional to
the cube of the wind speed s3 [2,4].

The GG parameters were obtained for the empirical data by the
maximum likelihood method, as before. The corresponding set of
nonlinear equations were solved by the Newton–Raphson algo-
rithm [34] with initial guesses for the parameters provided by Wei-
bull fits.

Our results show that the GG PDF Eq. (7) provides a significantly
improved fit compared to the Weibull model Eq. (5). The improve-
ment is especially spectacular at the right tail (high wind speeds),
which is correctly fitted in each case (Fig. 8). Nevertheless, even the
generalized gamma distribution cannot capture all the features of
the measured histograms over a few geographical areas. Such a
problematic region is the northern coast of the Black sea, especially
around the Crimean peninsula. Further details and a possible cli-
matological explanation are given in Section 4.

The values of the fitted parameters at different locations can be
seen in Fig. 9. The peak maximum m given by Eq. (8) exhibits prac-
tically the same pattern as the average wind speed �s (Fig. 1a) or the
Weibull scale parameter s0 (Fig. 6a), so we do not show the map
again. The left tail shape parameter q ¼ �k� 1 (Fig. 9a) is approxi-
mately 1 over the seas, which implies a close to linear increase of
probabilities for low wind speeds. The corresponding characteristic
values are definitely larger over land, typically around q � 2. The
geographical pattern for the right tail shape parameter k (Fig. 9b)
has the opposite tendency: typical values around 2 are characteris-
tic over most of the offshore areas, whereas smaller values closer to

Fig. 7. Lognormal fits for the same normalized histograms as shown in Fig. 5. (a) Linear scale and (b) semi-log scale.

Fig. 8. Maximum likelihood GG fits (see Eq. (7)) for the same normalized histograms as shown in Figs. 5 and 7. (a) Linear scale and (b) semi-log scale.
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1 over land indicate a slower decay of large wind speed
probabilities.

A possible way of confronting the goodness of fit for Weibull
and generalized gamma distributions is to compare the spatial pat-
terns of an error parameter, such as the residual (or unexplained)
percentage variance 100ð1� R2Þ. The results shown in Fig. 10 con-
vincingly demonstrate that the generalized gamma distribution
provides a better tool to fit wind speed histograms over various
surface conditions. Note that the range of color scale in Fig. 10 is
identical to the scale in Fig. 4, which illustrates that both the Wei-
bull and GG models are superior compared to any Gaussian
description that assumes linear correlation between u and v wind
velocity components.

The maps of the GG parameters distribution in Fig. 9 showing
large coherent geographical areas suggest that the different shapes

for the wind speed histograms have a physical origin. Further in-
sight can be gained by inspecting the correlation plots of the fitted
GG parameters q ¼ �k� 1; k and m; the results are shown in Fig. 11.

The first inference to be drawn in Fig. 11a is that only a minority
of histograms coincide with the constrained distributions of Wei-
bull (k ¼ qþ 1), gamma (k ¼ 1) or Rayleigh (q ¼ 1; k ¼ 2) forms,
the rest have significantly different shape parameters for the left
and right tails. Furthermore, the separation of clusters in the
parameter space corresponding to histograms over sea surface
and over land is remarkable. The overlap between the shape
parameters is characteristic for relatively small islands (e.g. Ire-
land) and restricted maritime regions (e.g. Adriatic sea). Fig. 11b
illustrates the interdependence between the left tail shape param-
eter q and mode m; the separation for sites over sea and land is
clear again. From the point of view of wind power generation,

Fig. 9. Geographical distribution of fitted GG parameters (see Eq. (7)). (a) Left tail parameter q ¼ �k� 1 and (b) right tail shape parameter k.

Fig. 10. Unexplained percentage variance 100(1� R2) for (a) Weibull [Eq. (5)] and (b) GG [Eq. (7)] fits.

Fig. 11. Correlation plots for the fitted parameters of GG distribution (see Eq. (7)): (a) q ¼ �k� 1 vs. k, straight lines denote the special cases of gamma and Weibull
distributions, and a diamond symbol denotes the Rayleigh distribution; b) q vs. m; and (c) k vs. m. For an explanation of the continuous lines in (c) see the text. Land and sea
surface areas are distinguished by different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the correlation plot in Fig. 11c is the most interesting. This illus-
trates the relationship between the right tail shape parameter k
and the mode m (essentially the mean wind speed). The optimal
parameter regime is located somewhere in the upper right quarter
of the diagram Fig. 11c, where the mean wind speed is well over
the cut in value of 5 m/s, and the decay of probabilities of very
large speeds is fast. The latter property is beneficial because of
the smaller frequency of high loads on the wind turbine’s tower.

For a further analysis of Fig. 11c, let us suppose that the proba-
bility of wind speeds obeys the GG distribution Eq. (7) with a con-
stant second (non-central) moment hs2i ¼ C, characterizing large
coherent geographical regions. An invariant second moment
means that the average momentum flow rate is conserved. (The
instantaneous mass flow rate is given by _m ¼ .Asi, where . is the
density, A is the cross sectional area and si is the instantaneous
flow speed. The momentum flow rate is simply _msi; its average va-
lue over a given time interval is clearly related to hs2i.) In order to
check the behavior of the second moment, we determined its geo-
graphical distribution (Fig. 12a) and the corresponding histograms
separately over land and seas (Fig. 12b). The histograms in Fig. 12b
reveal a characteristic second moment hs2i � 67 m2/s2 for mari-
time locations (with much lower values around the coastlines),
and a bimodal distribution for land with two local maxima at

5 m2/s2 for high altitudes and 
15 m2/s2 for the rest of the
continent.

Next, we return to Fig. 11b. As it is already noticed, the left tail
shape parameter q ¼ �k� 1 is close to 1 for most maritime loca-
tions, irrespective of the other parameter values. Much larger vari-
ations are observed over land; nevertheless, we can fix a typical
value somewhere around q ¼ 2. This permits a consistency check
of the results: when the second moment hs2i (see Fig. 12b) and
shape parameter q are fixed, Eqs. (8) and (10) provide a relation-
ship to express the mode m as a function of k. The thin curves in
Fig. 11c illustrate the expected behavior with the fixed parameter
values for sea and land; the agreement is quite satisfactory. Note
that this procedure does not favor the second moment of a ¼ 2 in
Eq. (10); practically any of them would work. However, we found
that the histogram of the second moments (Fig. 12b) exhibits the
best separation of peaks, and therefore, it is suitable to estimate
characteristic values.

4. Temporal behavior of wind speed records

The probability density distribution of wind speed represents
aggregated statistical information; however, it contains no
information about possible temporal patterns, which is equally
important for practical purposes. The standard method to reveal
such patterns is Fourier spectral analysis. Since the ERA-40 records

contain no missing intervals, we could exploit the speed of the FFT
(fast Fourier transform) procedure [34] in our analysis.

The power spectra of wind records exhibit a fairly simple struc-
ture; an example is shown in Fig. 13. Only two characteristic cycles
could be extracted from all of the data: annual and daily periods.
The wide continuum background can be fitted by a Lorentzian
spectrum (solid line in Fig. 13)

Sðf Þ ¼ 2s

1þ ð2pf Þ2s2
; ð11Þ

where s is a characteristic time related to an exponential decay of
the autocorrelation function as

AðDtÞ ¼ hsðtÞsðt þ DtÞi / exp �Dt
s

� �
: ð12Þ

Typical values for the exponential decay time s are between 1.5 and
4.0 days.

As for the identified periodicities, the daily cycle is missing from
most of the records, and even the annual course can not be re-
solved at several places. In order to visualize the strength of the
periodicities, we determined the partial power of the periodic com-
ponents by integrating the area under the peaks shown in Fig. 13
for normalized power spectra. The geographical distributions are
illustrated in Fig. 14. Numerical values close to zero mean that
the given peak fades into the background. However, the maps in
Fig. 14a should be considered with care because the low sampling
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<s2 >
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Fig. 12. The second non-central moment hs2i calculated from Eq. (10) using GG fitted parameters. (a) Geographical distribution. (b) Unnormalized histograms for maritime
(dashed line) and terrestrial (gray shading) locations. Characteristic values hs2i of the peaks are indicated with arrows (see text). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Normalized power density spectrum of the wind speed record over nort-
hern Germany (52�N, 11�E). The solid line shows a Lorentz fit [Eq. (11)].
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frequency and the low spatial resolution can obviously hinder res-
olution of the daily cycle at many places close to coastlines.

Fig. 15 illustrates typical annual cycles computed over the 44
years. The most remarkable features are that the periodicity is very
weak (the amplitude of the 15 day moving average is less than half
the mean wind speed �s for the given locations); furthermore, it is
loaded with extremely large day to day fluctuations. Such large
fluctuations mean that the annual cycle is present only as a weak
change of the boundary conditions determining the main atmo-
spheric flow features, and it is almost fully masked by the short
range natural fluctuations of turbulent airflow.

In view of the above results, we can consider the time series of
wind speeds as a superposition of three signals related to different
physical mechanisms. The slowest component is a weak annual
periodic background determined by the changing global insolation.
Far the strongest component is determined by synoptic scale mete-
orological features (extratropical cyclones and anticyclones) and is
loaded with short range turbulent fluctuations excited by surface
roughness and thermal convection. The third component, repre-
senting the daily periodicities, is characteristic of coastal locations
where the well known land–sea temperature contrast often in-
duces daily periodic winds.

This picture helps to explain the apparent breaks in many histo-
grams, clearly visible also in the near coast record in Figs. 5, 7 and 8
at s = 4.5 m/s. Such histograms can be perfectly decomposed into a
superposition of a narrow Gaussian (daily coastal wind), and a
wide GG distribution representing the large scale flow. Since this
decomposition includes 6 free parameters to be fitted, its useful-
ness is limited in the practice.

Nevertheless, it is worth checking the effects of removing the
background periodicities, thus considering wind speed fluctuations
s0 around various trends. The first procedure we implemented re-
moves constant average values �u and �v separately from the velocity
components and produces the fluctuation series

Fig. 14. Partial power for the (a) daily and (b) annual periodicities extracted from normalized FFT power spectra of wind speed records. Note the different color scales. (By
definition, the total integrated power has unit value). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Annual wind speed cycles (a) over the Atlantic Ocean (66�N, 4�W) and (b) over northern Germany (52�N, 11�E). Brown lines represent the 44 year average for a given
synoptic hour and calendar day and a thick red line shows the 15 day moving average. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 16. Semi-log scale wind speed histograms at the Crimean peninsula (45�N,
34�E). From top to bottom: unfiltered data, constant removed [Eq. (13)], daily cycle
removed [Eq. (14)], and daily and annual cycle removed [Eq. (15)]. Continuous lines
represent generalized gamma fits. The curves are vertically shifted by a value of 2
with respect to each other. The correct scale corresponds to the uppermost curve.
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s0cðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uðtÞ � �u�2 þ ½vðtÞ � �v�2

q
: ð13Þ

Note that the results shown in Fig. 4a were obtained by the same
method [Eq. (13)]. Next, the daily cycle can be removed by comput-
ing the average values for each synoptic hours separately as
�uðhÞ ¼ 44�1 � 365�1P

y;duðy; d;hÞ and �vðhÞ similarly and obtaining

s0dðy; d;hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uðy; d;hÞ � �uðhÞ�2 þ ½vðy; d;hÞ � �vðhÞ�2

q
; ð14Þ

where the time variable t is replaced by the full calendar indices
y ¼ 1 . . . 44 (year), d ¼ 1 . . . 365 (day) and h ¼ 1 . . . 4 (hour). Finally,
the daily and annual periodicity can be removed by obtaining aver-
age values for the velocity components as �uðd;hÞ ¼ 44�1P

yuðy;d; hÞ
and �vðd; hÞ similarly for a given day and hour in a year. The fluctu-
ations around the daily and annual cycles are given as

s0aðy; d;hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uðy; d;hÞ � �uðd;hÞ�2 þ ½vðy; d;hÞ � �vðd;hÞ�2

q
: ð15Þ

Note that the results shown in Fig. 4b were obtained by this method
[Eq. (15)].

The effects of gradually removing a constant, daily, and annual
cycles from the original records is demonstrated in Fig. 16. It is
obvious that wind speed fluctuations are much closer to a single
generalized gamma distribution than the original wind speed s.
This indicates that the main component of wind, determined by
the synoptic scale atmospheric patterns, obeys a GG probability
density distribution indeed. The improvement works almost glob-
ally, as illustrated in Fig. 17.

The spatial distribution of fitted parameters and the correlation
plots between them are very similar to the results obtained with-
out the removal of averages (see Figs. 9 and 11), and therefore, the
corresponding figures for wind speed fluctuations are not shown.

5. Conclusions

As a first step of an extensive assessment of wind energy poten-
tial over Europe, we investigated the wind speed distribution based

on the 44 years long ERA-40 data base. Our aim was to give a uni-
form description of wind speed as a random variable and to com-
pare the performance of the widely used analytical PDFs. The
advantage of these model PDFs is that a few parameters (typically
1–3) can capture most features of the observed wind speed histo-
grams. We estimated parameters using the maximum likelihood
method.

The simplest physically plausible model predicts wind speed to
follow a Rayleigh distribution. Since we have simultaneous data of
the wind velocity components, it was possible to show that the
assumptions of the Rayleigh model are, in general, not fulfilled
by real winds. Neither do the components follow Gaussian distri-
bution nor are they uncorrelated. By dropping the strict assump-
tions of the Rayleigh model but still assuming Gaussian wind
velocity components, the resulting model is still unable to give a
general description of wind speed over Europe.

As a next step, we tested the most commonly used two param-
eter Weibull PDF. It is known to perform well in describing real
wind speed distributions at individual locations due to its shape
flexibility. We found that the Weibull model can indeed adequately
characterize wind histograms over the seas and over some parts of
land areas as well. However, it fits poorly over major inland areas,
such as northern Germany for example, which is an extremely
important area concerning wind energy production. The popularity
of this distribution is probably due to its simplicity, and histograms
of short records might contain so much noise that there is no need
for a more accurate description with alternative PDFs.

Part of the Weibull model’s limitations can be overcome by a
simple generalization leading to the generalized gamma (GG) dis-
tribution. This model has three parameters, two of which are shape
parameters accounting for the increased flexibility of the PDF. We
found that the GG model fits well almost everywhere, especially if
we focus on the high speed tail of the distribution, which is essen-
tial in wind power estimations. A closer look at ‘‘anomalous” histo-
grams and a frequency domain analysis revealed that wind records
are sort of a superposition of three signals (besides the high fre-

Fig. 17. Residual percentage variance 100ð1� R2Þ of generalized gamma fits. (a) unfiltered wind speed s, (b) constant trend removed s0c [Eq. (13)], (c) daily cycle removed s0d
[Eq. (14)] and (d) daily and annual cycle removed s0a [Eq. (15)]. Note that the color scale is much narrower than in Fig. 10. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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quency components of turbulence, which are inaccessible due to
the low sampling frequency of the data). Two of these signals are
periodic: a weak annual cycle can be observed almost everywhere
and a daily cycle over coastal and inland areas. After removing
these periodicities, we get the main wind component. These are
wind speed fluctuations mainly due to synoptic scale meteorolog-
ical phenomena. We showed that these fluctuations are almost
perfectly described by the generalized gamma model.
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