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Abstract. In this paper we assess the vulnerability of different synthetic 

complex networks by measuring the traffic performance in presence of 

intentional nodes and edge attacks. We choose which nodes or edges would be 

attacked by using several centrality measures, such as: degree, eigenvector and 

betweenness centrality.  In order to obtain some information about the 

vulnerability of the four different complex networks (random, small world, 

scale-free and random geometric) we analyze the throughput of these networks 

when the nodes or the edges are attacked using some of the above mentioned 

strategies. When attack happens, the bandwidth is reallocated among the flows, 

which affects the traffic utility. One of the obtained results shows that the scale-

free network gives the best flow performance and then comes random networks, 

small world, and the poorest performance is given by the random geometric 

networks.  This changes dramatically after removing some of the nodes (or 

edges), giving the biggest performance drop to random and scale-free networks 

and smallest to random geometric and small world networks.  

Keywords: Vulnerability, NUM, complex networks, attack strategies, 

measurements, bandwidth allocation.  

1   Introduction 

In today’s everyday life we are surrounded with complex systems. These complex 

systems can be represented as networks with a certain number of nodes joined 

together by edges. Commonly cited examples include social networks, technological 

networks, information networks, biological networks, communication networks, 

neural networks, ecological networks and other either naturally occurring or man-



made occurring networks. The topology of these complex networks is one aspect that 

might help understand in details the surrounding complex systems and its exploration 

started with the graph theory introduced by Erdős and Rényi [1]. Erdős and Rényi 

introduced random models in order to model the real complex systems and to capture 

some of the main characteristics of the real complex systems. However, these models 

could not give a clear picture of the topology of complex systems and there was an 

increasing need of new more realistic models. Watts and Strogatz found out that many 

real world networks exhibit what is called the small world property, i.e. most vertices 

can be reached from the others through a small number of edges, like in social 

networks. After the introduction of the Watts and Strogatz’s model, Barabási and 

Albert showed that the structure and the dynamics of the network are strongly 

affected by nodes with a great number of connections [2]. It was found that many real 

complex networks have a power-law distribution of a node’s degree and by that they 

are in fact scale-free networks. Additionally, many of the systems are strongly 

clustered with a big number of short paths between the nodes, i.e. they obey the small 

world property. Another contribution that helped understand the underlying topology 

of some real complex system, such as ad hoc networks, is made by Penrose 

introducing the random geometric graphs and their properties [3].  

The above mentioned models helped in understanding the dynamic processes that 

might occur in the network. Epidemic spreading [4,5], nodes’ protection so that the 

network can resist certain attacks or failures [6], gossip [7] or the process or spreading 

influence in the network [8], synchronization among nodes [9], cascading failures 

[10] are some examples of dynamic behaviors of complex networks. 

Recently, the primary interest in complex networks is the flow properties of the 

transport entities. In the complex systems there are many types of flows, such as: 

traffic flows, information flows, energy flows, chemical flows, idea flows, etc. In 

particular, the most interesting aspect is how the networks structure affects the flow 

properties, like traffic congestion [11]. In addition to this, many researchers have 

studied how attacks or failures of nodes affect the traffic performance in the network 

[12]. This is a present problem in the real-world networks like the power grids, the 

Internet, telephone networks and transportation networks. In [13] authors study the 

robustness to random and intentional node attacks. In this study when a node is 

attacked, the flows which go through the node have to reconfigure their paths which 

may affect the loads on the other nodes and may start a sequence of overload failures. 

Their results show that scale-free networks are highly robust to random node failures 

but fragile to intentional node attacks, while the random graphs are robust under both 

node attacks. In their results, the flow rates are assumed to be fixed even after the 

reconfiguration of flow paths. In [14] authors study the effect of random and 

intentional attacks on the traffic performance in the Internet. They define some 

indicators to measure the traffic performance and show how they are affected. In [15] 

authors analyze the total throughput of ad hoc networks with different network 

interaction models at communication level, such as: random, small world, scale-free, 

geographic, full mesh and star models. Their results show that the full-mesh network 

has highest throughput, while scale-free and star networks show lowest throughput.  

In this paper we are assessing the vulnerability of complex networks based on 

optimal flow measurements under intentional node and edge attacks. We are using 

four models of complex networks as underlying networks: random, small world, 



scale-free and geometric model. On these models we calculate the optimal bandwidth 

allocation solution for a given flow scenario. Then we are measuring the vulnerability 

of the network by using different strategies for node and edge removal and calculating 

the reduction of the total flow under the given scenario, network model and attack 

strategy.  

Therefore, the main goal of this work is to measure and analyze the vulnerability of 

different complex networks under different node and edge strategies by measuring the 

total flow in the network. 

The rest of the paper is organized as follows. In Section 2 we present the network 

utility maximization problem with its constraints and utility function. Afterwards, in 

Section 3 we give the description of the various strategies for intentional node and 

edge attacks. Simulation results and analysis are given in Section 5 and Section 6 

concludes this paper. 

2   Network Utility Maximization Problem- NUM 

Consider a network with m edges, labeled 1, . . . ,m, and n flows, labeled 1, . . . , n. 

Each flow has an associated nonnegative flow rate fj; each edge or link has an 

associated positive capacity ci. Each flow passes over a fixed set of links (its route); 

the total traffic ti on link i is the sum of the flow rates over all flows that pass through 

link i. The flow routes are described by a routing matrix m x n
R R∈ , defined as: 

                                      
1 flow passes through link

0 otherwise.
ij

j i
R


= 


                                      (1) 

Thus, the vector of link traffic, m
t R∈ , is given by t = Rf. The link capacity constraint 

can be expressed as Rf c≤ .  

The aim of transmitting a flow of packets from their source to the destination is to 

get some benefit from the information transmission. Thus, it is natural to set a utility 

function Uj for flow j, and assume that Ui is related to its rate fj. In this work as a 

utility function we use a function which provides proportional fairness among the end 

users:  

                                                         ( ) log
j j

U f f=                                                     (2) 

This function is strictly concave, because the second derivative is negative. From 

the concavity of the utility function it follows that the optimal rates ˆ{ }
j

f  satisfy the 

following condition: 

                                                        
ˆ

0,
ˆ

j j

j j

f f

f

−
≤∑                                                      (3) 

This means that if rate of one transmitter rises, the rate of another transmitter will 

drop, and the drop will be proportionally larger than the rise. This property is known 

as the law of diminishing returns.   

In order to maximize the utility we have to solve the following convex problem: 



                                                   1
maximize log

subject to ,

n

jj
f

Rf c

=

≤

∑
                                             (4) 

with variable f, and the implicit constraint 0f ≥ . 

Some comments about the NUM problem are given in the text below.  

An unfair resource allocation is also possible, in which the goal is to maximize the 

overall throughput without any consideration about the fairness among the end users. 

If this is the case, then the unfair utility function would be: 

                                                            ( )
j j

U f f=                                                       (5) 

Additionally some reformulations and relaxations can be used by which the NUM 

problem can be decomposed both horizontally and vertically, and can be solved in 

distributed manner as in [16] and [17]. These decompositions are not needed for our 

analysis, because we are interested in overall network performance, so we solve the 

problem in a centralized manner.  

In order to represent the performance of the complex network we use the 

maximum end-to-end throughput (MT) as performance indicator. MT is the total 

amount of bits received by all nodes per second and is measured in Mega bits per 

second (Mbps): 

                                                      j

j n

MT f
∈

=∑                                                       (6) 

3   Attack Strategies 

In order to assess the vulnerability of the network we are considering two kind of 

intentional attacks: node and edge attack. In the network of computers attacks on 

nodes can be interpreted as breakdowns of servers by malicious hackers, while the 

attacks of edges may correspond to the cutting off the communication links. 

Additionally, the attacker can choose different strategies for node or edge removal, 

which are based on various centrality measures. These centrality measures can be 

based on the initial information about the network or on the information obtained by 

recalculation, when some of the nodes or edges are removed. We call the first ones 

initial and second ones recalculated. In the part below we will describe the different 

centrality measures that we are using for node or edge removal. 

3.1 Degree Centrality – DEG 

This measure is based on the idea that more important nodes (edges) are more 

active, that is, they have more neighbors in the graph [18,19]. It may be used for 

finding the core nodes (or edges) of a certain community. In order to use this measure 

for edge attack we are defining the edge degree ke from the local information of the 

node degrees [14]: 



                                                            
e v w

k k k≡                                                      (7) 

where the edge e connects two nodes v and w with node degrees kv and kw, 

respectively. 

3.2 Betweenness Centrality – BTWN 

This is a measure of the importance of a node in a network, and is calculated as the 

fraction of shortest paths between node pairs that pass through the node. Betweenness 

is, in some sense, a measure of the influence a node has over the flow of information 

through the network. Let G be a graph given with set of nodes V and set of edges E. 

Let s and t are be nodes of the graph.
st

σ is the number of paths that pass from s to t.  

Let ( )
st

vσ  be the number of shortest paths that pass through the node v. The central 

betweenness of node v is: 

                                   

( )
( ) st

s v t V st

v
C v

σ

σ≠ ≠ ∈

= ∑
    

(8) 

Just like node betweenness denotes the importance of the nodes, the edge 

betweenness, in the similar way assigns values to links according to their importance. 

It is calculated as a number of shortest paths that pass through the edge. Let ( )
st

eδ  be 

the number of shortest paths from s to t that pass through the edge e and 
st

δ be the 

total number of paths from s to t. The edge betweenness of edge e is: 

                                       

( )
( ) st

s t V st

e
C e

δ

δ≠ ∈

= ∑
    

(9) 

3.3 Eigenvector Centrality (Pagerank) - PR 

With this measure we can find out the importance of nodes according to the 

adjacent matrix of a connected graph [20,21]. It assigns relative scores to all nodes in 

the network based on the principle that connections to high-scored nodes contribute 

more to the score of a node than connections to low-scored nodes. In order to use this 

centrality measure for finding the importance of edges we first transform the node 

adjacency matrix into edge adjacency matrix and then we use the pagerank algorithm. 

The transformation is done in a way that we say that two links are neighboring if they 

are connected to the same node.  

5   Simulation and Results 

For our simulations we are using the above mentioned network models, where each 

network generator generates 5 samples of the 4 network models. Each sample has 100 

nodes and average node degree around 6. The number of flows in each scenario is 

1000 and each O-D (Origin – Destination) pair is generated randomly. The flow rate fj 



is also generated randomly and it is between 0 and 1. The capacity ci of the all links is 

equal to 1.  

In order to solve our network utility maximization problem defined with (4) we are 

using CVX [25]. CVX is a modeling system for disciplined convex programming 

(DCP). DCP is a methodology for constructing convex optimization problems and is 

meant to support the formulation and construction of optimization problems that the 

user intends from the outset to be convex. DCP imposes a set of conventions or rules. 

Problems which follow the rules can be rapidly and automatically verified as convex 

and converted to solvable form. Some problems can be reformulated to be made 

convex and then solved by appropriate methods for convex problems. 

The simulation starts with calculating the maximum end-to-end throughput (6) for 

the given network. Afterwards, we attack a certain node (or edge) by removing it 

from the network, using one of the mentioned strategies in Section 3. The flows 

which originate or end at this node are randomly transferred to a different node, while 

the flows which go through the node reconfigure their routes to find new shortest 

paths. The removal of the nodes (or links) changes the entries in the adjacency matrix. 

Using the new routing information we compute a new optimal bandwidth allocation 

using (4). In these simulation scenarios we use static routing, that means that we do 

not take into consideration the load balancing. In addition, the simulation for a given 

network stops when the network falls apart into two or more islands. 

In the next part we will show and analyze some of the interesting results we have 

obtained in our simulations. 

In Fig. 1 we show the flow for the ER when nodes are attacked with the suggested 

recalculated strategies. One can see that the flow is decreasing in the same fashion for 

all the three strategies. The only difference between the strategies is that the pagerank 

disconnects the network when the smallest number of nodes is removed. By removing 

8% of the nodes the flow decreased by 43%. 

Fig. 2 shows the same analysis only now strategies based on initial information are 

used. We can see quite interesting phenomenon, i.e. by removing the third most 

important node, the flow increases instead of decreasing. For the explanation of this 

phenomenon refer to [14]. Additionally, with these attacks based on initial 

information when removing 8% of the nodes the flow decreased by around 37%. 
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Fig. 1. Maximum end-to-end throughput for the 

random networks (ER) when attacking nodes 

using recalculated strategies, such as: 

betweenness centrality (BTWN), degree 

centrality (DEG) and pagerank (PR)  

Fig. 2. Maximum end-to-end throughput for 

the random (ER) networks when attacking 

nodes using strategies based on initial 

information, such as: betweenness centrality 

(BTWN), degree centrality (DEG) and 

pagerank (PR)  

 For the scale-free networks the recalculated strategies for attack gave the same 

performance and they disconnect the network only when 5% of the most important 

nodes were removed. For the attacks based on initial information, from comparing fig. 

3 with figures 1, 2, 4, and 5, one can see that the decreasing slop of the flow curve is 

much bigger than for the rest of the networks.  
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Fig. 3. Maximum end-to-end throughput for the 

scale-free (SF) networks when attacking nodes 

using recalculated strategies, such as: 

betweenness centrality (BTWN), degree 

centrality (DEG) and pagerank (PR). 

Fig. 4. Maximum end-to-end throughput for the 

random geometric (GR) networks when attacking 

nodes using strategies based on initial information, 

such as: betweenness centrality (BTWN), degree 

centrality (DEG) and pagerank (PR)  

Fig. 4 shows how the strategies based on initial information affect the flow in GR 

networks. It is noticeable that BTWN disconnects the network when the smallest 

number of nodes is removed. After which came pagerank and the degree strategy 

needs around 27% of the nodes in order to disconnect the network. In addition, the 

slope of the flow curve is the smallest, which means that this kind of attacks does not 

reduce the flow too much, like in the other networks. From Fig. 4 we can notice the 

same phenomenon, mentioned before, i.e. by removing certain nodes the maximum-

end-to-end throughput increases instead of decreasing. 
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Fig. 5. Maximum end-to-end throughput for the small world (SW) networks when attacking 

nodes using recalculated strategies, such as: betweenness centrality (BTWN), degree centrality 

(DEG) and pagerank (PR). 

For the small world network when using recalculated strategies by removing 10% 

of the nodes, the flow decreased only 27%, while when using strategies based on 

initial information it only decreased for 12% (Fig. 5). This means that this type of 

network is resistant to intentional node attacks when it comes to measuring the flow 

in the network. The three types of attack influenced the flow in the same manner. The 

only difference is that network was disconnected firstly with BTWN, then PR and 

lastly with DEG. 

In Fig. 6 we show the total flow of the four types of network when using PR, based 

on initial information, as strategy for intentional node attack. The total flow in the 

networks before removing any node depends on the type of the network. For instance, 

the highest flow has the SF model, then the ER, SW and the last is the GR model. 

These results are equal with the results obtained when using game theory and the 

Method of Successive Averages as a technique for calculating the network 

vulnerability [26].  

The total flow changes dramatically when we start to attack nodes based on the PR 

technique based on initial information. The highest performance drop has the SF and 

ER networks. The problem with the GR networks is that they can be easily broken 

into several disconnected regions (by removing about 1% of the total number of 

nodes).  

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23Percentage of removed nodes

M
a
x
im

u
m

 e
n
d
-t
o
-e

n
d
 t
h
ro

u
g
h
p
u
t

ER

GR

SF

SW

 

0

20

40

60

80

100

120

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

Number of removed edges

M
a
x
im

u
m

 e
n
d
-t
o
-e

n
d
 t
h
ro

u
g
h
p
u
t

ER

GR

SF

SW

 

Fig. 6. Maximum end-to-end throughput for all 

synthetic complex networks when attacking 

nodes using pagerank based on initial 

information (PR) 

Fig. 7. Maximum end-to-end throughput for 

all synthetic complex networks when 

attacking edges using recalculated pagerank 

(PR) 

We encountered almost the same results when instead of nodes we were attacking 

edges using the recalculated pagerank algorithm (see Fig. 7). It is noticeable that SF 

and ER networks at the beginning show the best performance, but after removing 

some of the edges (around 12%) the SW and GR networks outperform the ER 

network. Then when we continue to remove more edges (around 21%) the GR 

network performance is close to that of the SF network. At the end when we removed 

around 27% of the edges the SW outperforms the rest of the networks, when we 

measure the maximum end-to-end-throughput. When we removed 15% of the edges, 



the highest drop in the flow performance showed the ER network (around 43%), then 

SF (around 42%), then SW (around 36%) ant the lowest drop GR (around 26%). In 

order to disconnect the network, by attacking the edges with the PR strategy, the most 

robust to attacks was the SF (around 30% of the edges were needed to disconnect the 

network), SW (around 28%), ER (around 22%) and GR (around 18%). 

6   Conclusion 

This brief has studied the attack (node and edge) vulnerability of the different 

models for complex networks when the maximum end-to-end throughput of the 

network was taken into consideration. All of the models for complex networks show a 

considerable decline in performance when they encounter an intentional node or edge 

attack. One of the obtained results show that the scale-free networks have the highest 

maximum end-to-end throughput, but when removing nodes or edges the throughput 

decreases dramatically. The sharp decrease was also the case in the random networks. 

Additionally, it was shown that among the suggested recalculated and strategies based 

on initial information there is no big difference when we measure the throughput, 

whereas they differ in the percentage of nodes (or edges) needed to be removed in 

order to disconnect the network. The throughput is decreased more when instead of 

strategies based on initial information we are using recalculated strategies. 

As a future work instead of static routing we want to use dynamic routing with 

load balancing, which takes into account the current flow in the edges, and by that we 

want to obtain more realistic results. Another improvement would be, instead of 

removing nodes (or edges), to use certain nodes to generate jam traffic in the network 

in order to reduce the maximum end-to-end throughput in the network, which presents 

a more realistic scenario than to remove some important node (or edge) in the 

network, which can be highly secured and protected. 
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