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Abstract

In this work, we have applied Recurrence Quantification Analysis (RQA) to the Nordic spot electricity market data. Our main
interest was on trying to classify these series and analysing if their dynamical behaviour were in some way correlated with known
events, e.g. the evolution of the Nord Pool and the climatic factors. Furthermore, we were interested in developing alternative
measures to correlate the high volatility of these series with historical and meteorological events. The analysis suggests that two
RQA measures: DET and LAM are able to produce a better resolution for distinguishing between several periods than by measuring
the time series standard deviation.
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1. INTRODUCTION

The complex behaviour of financial time series, which
linear stochastic models are not able to account for [1], has
been attributed to the fact that financial markets are non-
linear stochastic, chaotic or a combination of both. Even
though there is no conclusive evidence of low dimension de-
terministic structure, in the last few years, nonlinear time
series analysis has expanded rapidly in the fields of Eco-
nomics and Finance [2]. This is also due to the fact that eco-
nomic and financial time series seem to provide a promising
area for the development, testing and application of non-
linear techniques and the fact that high frequency financial
time series are readily available [3]. Among these time se-
ries, energy spot prices have also been analysed with sev-
eral nonlinear techniques.

In [4],[5] the authors established, using Hurst R/S anal-
ysis, that the electricity prices are anti-persistent with a
Hurst exponent lower that 0.5, i.e. H � 0.41. Also the Lya-
punov exponents has been estimated in a recent study [6].
Even though volatility (the standard deviation of the value
change at a specific time horizon) is a fundamental char-
acteristic of financial markets, power markets have levels
well above other financial time series [7]. Simonsen [7] has
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demonstrated that power market volatility has some fea-
tures in common with other financial markets, such as clus-
tering and log-normal distribution, but also presents some
differences such as higher level and price-level dependence.

In this work we have applied non-linear time series tech-
niques to the Nordic spot electricity market data. Our main
interest was on trying to classify these series and analysing
if their dynamical behaviour was in some way correlated
with known events, e.g. the evolution of the Nord Pool and
the climatic factors. This work is a first step in the direc-
tion of finding if there exists a correlation between some
features of the time series with the volatility, frequency and
intensity of blackouts. First, we have analysed the sta-
tionarity of these series using space time separation plot
[8] and we have found that energy spot prices are more
stationary than other financial time series [9],[10]. Further-
more, as volatility is normally used to estimate the risk as-
sociated with a financial instrument, we were interested in
finding related non-linear measures. Assuming that during
high volatility periods there is an increase in the stochastic-
ity of the system, we have applied two measures obtained
from the application of Recurrence Quantification Analysis
(RQA) [11], which allows the quantification of the Recur-
rence Plots (RP) [12]. The results suggest that these two
RQA measures: DET and LAM are able to give a better
resolution for distinguishing between several periods than

Preprint submitted to Elsevier 25 September 2007



1992 1993 1994 1995 1996 1997 1998 1999

100

200

300

400

500

600

700

t(years)

P
ric

e 
N

O
K

/M
W

h

Fig. 1. Spot prices in the Nordic electricity market (Nord Pool) in
NOK/MWh from May 1992 until December 1998.

by measuring the time series standard deviation. In this
sense, they open the possibility to use them as a surrogate
for the measure of the financial time series volatility.

2. DATA PROVISION AND HISTORICAL
BACKGROUND

We have analyzed hourly data from the Nord Pool system
spot prices. The series is divided into two parts. In the first
part (which lasts from 4th May 1992 until 31st December
1998 and comprises 58,392 data points, see Fig.1), the prices
are indicated in Norwegian Krone (NOK)/MWh, whereas
in the second time series (which lasts from 1st January 1999
until 26th January 2007 and comprises 70,752 data points,
see Fig.2), the prices are expressed in EUR/MWh. The
Nordic electricity market, known as Nord Pool was created
in 1993 and it is owned by the two national grid compa-
nies, Statnett SF in Norway (50%) and Affrverket Svensa
Kraftnt in Sweden (50%), which was established as a con-
sequence of the decision in 1991 by the Norwegian Parlia-
ment to deregulate the market for power trading.

Between 1992 and 1995 only Norway contributed to the
market, in 1996 a joint Norwegian-Swedish power exchange
was started-up and the power exchange was renamed Nod
Pool ASA. Finland started a power exchange market of its
own, EL-EX, in 1996, and joined Nord Pool in 1997. Be-
ginning of 15th June 1998, Finland became an independent
price area on the Nord Pool Exchange. The western part of
Denmark (Jutland and Funen) has been part of the Nordic
electric power market since 1st July 1999, whereas the east-
ern part of Denmark entered after 1st October 2000. On 5th

October 2005 also the German area KONTEK was added
in the Nord Pool exchange market. Table 1 summarises the
historical evolution of the Nord Pool.

The spot market operated by Nord Pool is an exchange
market where participants’ trade power contracts for phys-
ical delivery the next day and is thus referred to as a day-
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Fig. 2. Spot prices in the Nordic electricity market (Nord Pool) in
EUR/MWh from January 1997 until January 2007.

Table 1
Nord Pool participating countries and dates of entry.

Countries Date of entry

Norway 1/1/93

Norway and Sweden 1/1/96

Norway, Sweden and Finland 29/12/97

Norway, Sweden, Finland and W. Denmark 1/7/99

Norway, Sweden, Finland, W. & E. Denmark 1/10/00

KONTEK zone (Germany) 5/10/05

ahead market. When no grid congestion exists there will be
a single identical price across the area with no congestions.
However, when there is insufficient transmission capacity
in a sector of the grid, grid congestion will arise and the
market system will establish different ”price areas”. Some-
times the prices are of the entire Nordic region. Sometimes
more than one price area exists [13],[14].

In this work we will only consider the ”system price”.
The variation of the prices in the Nord pool system is well
correlated with the variations in precipitation in Norway
and Sweden because of its strong dependence of the hy-
dropower generation. Table 2 summarises the climatic con-
ditions during the last years. Very special hydrological con-
ditions appeared during the autumn and winter season of
2002-2003 with a sharp decline of precipitation. This was a
rare event [15] which resulted in the spot prices increasing
in 2003. By looking into Figs. 1 and 2 and comparing with
Table 2, we can observe these correlations in the electricity
price. However, weather conditions are not able to explain
all the features in the time series. Moreover spot prices can
increase tenfold during a single hour. These spikes, which
are normally quite short lived, tend to be more severe dur-
ing high price periods [8].
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Table 2

Summary of meteorological conditions: Dry and wet years.

Year State Period considered

1996 dry complete year

1997-2000 wet complete years

2000 not very wet all year

2001 dry first eight months

2001 very wet last four months

2002-2003 very dry (rare event) complete years

3. DATA ANALYSIS AND RESULTS

The theory of embedding is a way to move from a tempo-
ral time series of measurements to a state space ”similar”
-in a topological sense- to that of the underlying dynam-
ical system we are interested in analysing. State space
reconstruction techniques were introduced in [16],[17]. In
nonlinear time series analysis usually delay coordinates
are used to reconstruct a representation of the original
state space that generated the dynamics. The state at
a time t of a measured variable s(t) is given by S(t) =
s(t), s(t − Δt), s(t − 2Δt), , s(t − (dE − 1)Δt), whereas Δt
is the time delay between data when reconstructing the
state space, and dE is the embedding dimension or the
dimension of the space required to unfold the dynamics.
However, state space reconstruction techniques assume
stationarity in the time series which does not always hold
(for a detailed discussion see [18] and references therein).

3.1. Finding the time delay and embedding dimension

Determining the time delay and the embedding dimen-
sion is the first step in nonlinear time series modelling and
prediction. The time delay, for the Nord Pool time series,
has been obtained using the first minimum of the AMI (Av-
erage Mutual Information function, [19]) with values of 15
and 13 hours, respectively. The embedding dimension has
been computed using the E1&E2 method [20]. Both series
give the same value, dE = 10. These high values are in
agreement with similar analysis carried out by Strozzi et al
[9] for high frequency foreign exchange time series.

3.2. Detecting non-stationarity

As a preliminary step, we have analysed the station-
arity of the Nord Pool time series using the space time
separation plot (stp), introduced in [8] and implemented
in the TISEAN software package (http://www.mpipks-
dresden.mpg.de/ tisean) [21]. The idea below this test is
that in the presence of temporal correlations the probabil-
ity that a given pair of state points in the reconstructed
state space -Si, Sj - have a distance dij = ‖Si − Sj‖
smaller than r, does not depend only on the position of the
state points but also on the time that has elapsed between
them. This dependence can be detected by plotting the
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Fig. 3. Space-time separation plot (stp) of the Nord Pool spot prices
(NOK/MWh); Space-time separation plot of the Nord Pool spot
prices (EUR/MWh).

number of neighbouring points as a function of two vari-
ables: time and distance. Provenzale [8] showed that in
the case of a random walk the contour curves does not
saturate, whereas in the case of a random series there was
saturation in the state space separation plot. Fig. 3 shows
the results of the test on the Nord Pool time series.In those
graphics the separation time is represented in the horizon-
tal axis whereas the separation in space is represented in
the vertical axis. We have represented the lines of constant
probability density, with 5% increments, with a given tem-
poral separation Δt.

It can be seen in Fig. 3 that the Nord Pool time series
saturate and this gives the indication that the Nord Pool
time series are more stationary than other financial high
frequency time series such as exchange rates for which
the stp does not saturate [9],[10]. This is probably related
with the way the spot market is operated as a day-ahead
market and the iterations carried out before defining the
prices, which does not exist in other financial markets.

3.3. Quantification of the Recurrence Plots

Eckmann et al. [14] introduced a new graphical tool,
which they called a recurrence plot (RP). The recurrence
plot is based on the computation of the distance matrix
between the reconstructed points in the phase space:

dij = ‖Si − Sj‖ . (1)

This produces an array of distances in a nxn square
matrix, D, n being the number of points under study.
If this distance is lower that a predetermined cutoff, r,
the pixel located at specific (i, j) coordinates is dark-
ened. These points highlight the recurrences of the dy-
namical systems and the recurrent plot provides insight
into periodic structures and clustering properties that
are not apparent in the original time series. In order
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Table 3
RQA measures for NOK/MWk original time series ant its surrogates.

Data set RR DET Lmax ENTR Trend LAM TT

NOK 16.10 67.13 3545 8.59 -8.69 69.99 308

Surr01 8.15 6.13 4808 6.74 2.31 1.80 124

Surr02 1.93 4.52 1355 4.91 -0.14 0.0 -

Surr03 2.81 8.03 4808 6.03 -1.62 0.0 -

Surr04 30.22 36.31 4808 7.99 -3.36 35.52 215

Surr05 1.74 13.22 1844 6.12 -0.98 0.06 110

Surr06 1.01 32.02 1178 6.29 -0.75 16.98 166

Surr07 4.79 13.28 2674 6.90 -0.80 7.53 154

Surr08 14.12 17.88 4350 7.36 -4.48 9.29 155

Surr09 5.93 13.53 3130 7.20 -2.46 6.30 159

Surr10 1.19 5.90 1064 4.70 -0.68 0.35 120

Surr11 4.86 51.64 4808 7.92 -1.54 52.44 266

Surr12 31.90 52.68 4808 8.42 12.41 54.52 218

Surr13 4.80 9.42 4808 6.88 0.52 0.72 144

Surr14 5.73 9.17 4154 6.78 -2.98 1.77 145

Surr15 4.97 6.34 2370 6.61 -2.34 1.72 115

Surr16 18.05 23.40 4808 7.68 -4.18 12.85 161

Surr17 10.85 43.19 4614 8.80 -7.22 38.30 339

Surr18 4.96 8.52 4808 6.60 -2.65 3.48 142

Surr19 6.32 4.46 4808 6.18 -1.99 0.38 114

Table 4
RQA measures for EUR/MWk original time series ant its surrogates.

Data set RR DET Lmax ENTR Trend LAM TT

EUR 7.12 35.33 2094 7.66 -4.59 33.94 264

Surr01 12.52 3.67 3340 6.36 -6.26 2.54 149

Surr02 1.64 5.89 2238 5.27 -1.10 1.87 119

Surr03 3.84 1.40 2150 4.53 -1.00 0.0 -

Surr04 4.38 1.11 1324 3.97 -0.29 0.0 -

Surr05 10.68 1.83 4187 5.73 -5.48 1.53 127

Surr06 8.66 18.81 4826 7.54 -5.64 9.85 146

Surr07 0.49 3.89 690 2.81 -0.35 0.0 -

Surr08 23.79 11.11 4826 7.51 -7.64 9.25 162

Surr09 30.27 10.83 4826 7.39 -1.83 7.11 151

Surr10 20.54 4.70 4826 6.85 -7.47 6.42 151

Surr11 2.34 3.78 1888 5.09 -1.16 1.53 134

Surr12 3.72 1.48 3517 4.06 -1.63 0.11 117

Surr13 4.99 3.74 3721 6.88 0.52 0.72 144

Surr14 21.65 9.02 4826 7.16 -2.90 9.66 155

Surr15 20.05 8.14 2669 7.25 -4.24 4.17 146

Surr16 6.81 5.38 3998 6.57 -4.10 0.76 125

Surr17 3.16 4.11 1964 5.64 -2.08 0.72 132

Surr18 7.81 3.37 2429 6.20 -0.47 2.77 132

Surr19 12.19 1.33 4826 5.43 1.50 0.09 126
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Fig. 4. Inverse of standard deviation and DET (top) and LAM
(bottom) for NOK/MWh
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Fig. 5. Inverse of standard deviation and DET (top) and LAM
(bottom) for EUR/MWh
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Fig. 6. RQA measures of EUR/MWh: Values are computed from a
720 point window (one month), shifted by 720 points. RQA param-
eters: Δt = 13, dE = 10, distance cutoff: line definition: 100 points
(≈ 4 days). Vertical lines correspond to the following dates: 1st Oc-
tober 2000, 5th October 2005 (see historical background).
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Fig. 7. Nonlinear metrics of the Nord Pool spot prices time series
in NOK/MWh: Values are computed from a 720 point window (one
month), data are shifted by 720 points. RQA parameters: Δt = 15,
dE = 10, distance cutoff: , line definition: 100 points (≈ 4 days
days). Vertical lines correspond to the following dates: 1st January
1993, 1st January 1996, 29th December 1997 and 1st July 1999 (see
historical background).

to extend the original concept and make it more quan-
titative, Zbilut and Webber [22] developed a methodol-
ogy called Recurrence Quantification Analysis (RQA).
As a result, several variables to quantify RPs have
been defined [23], ( http://homepages.luc.edu/ cwebber,
http://tocsy.agnld.uni-postdam.de).

We have observed that RR (%recurrence, the percent-
age of darkened pixels in recurrence plot), Lmax (the
longest diagonal line found in the RP), ENTR (refers to
the Shannon entropy), Trend (It is a measure of the paling
recurrence points away from the central diagonal) and TT

(trapping time which estimates the mean time that the
system will stay at a specific state) parameters could not
distinguish (with a 95% of confidence) between a linear
Gaussian dynamics and the dynamics behind the Nord
pool time series. Of course, this does not imply that those
parameters are not useful for their quantification, but only
that the values of the parameters in the surrogate time se-
ries were indistinguishable from those of the original time
series. On the contrary, DET (points forming diagonal line
structures) and LAM (%laminarity, quantifies the pres-
ence of laminar states in intermittent regimes) produced
always values which were higher in the original data set
when compared with surrogate data.

It is possible to assume that during high volatility pe-
riods there is an increase in the stochasticity of the Nord
Pool market and therefore measures related with the deter-
minism of our time series will tend to decrease. In addition,
one can also consider that the changes in the historical
evolution of the Nord Pool will have a direct effect on the
Nord Pool electricity prices. For these reasons, we were
interested in finding RQA variables that could be able to
discriminate between these effects.

To check if RQA measures were appropriate to anal-
yse the spot prices time series, we have created surrogate
time series generated by a Gaussian linear random process
with the same FFT of the real data set[20],then we have
computed the RQA parameters for all the time series.
The results are summarized in Table 3 and Table 4 for
NOK/MWh and EUR/MWh time series, respectively.

The fact that these two parameters were able to distin-
guish between the original and the surrogate time series
can be explained by assuming that there is more struc-
ture in the original series, and therefore the state space
remained closer or for longer times when compared with
their surrogate linear Gaussian process.

By way of assessing if these two measures were able to de-
tect some events that were not clear from a direct inspection
of the time series, we have computed these RQA measures
in a moving window. For this analysis, we used a one month
shifting moving window (720 points) for NOK/MWh and
EUR/MWh, respectively. For example; we were interested
in observing if some changes in the RQA parameters occur
in correspondence of the entry of a new country in the Nord
Pool 1 or in correspondence with dry and wet years 2. It is
well-known that high volatility periods are those in which
it is more difficult to make the forecast. Higher DET and
LAM mean that the states of the system stay closer in time
for longer periods forming diagonal or vertical segments in
the RPs. Then, we may assume that higher values imply
smaller volatility.

To study the relationship with volatility, we have com-
pared the profiles of these quantities with the inverse of
standard deviation normalized between 0 and 100 and, as
it can be seen in Figs. 4 and 5, we have found a qualitative
agreement.

Even though there is a high linear relationship between
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DET and LAM, with r2 values of 0.88 and 0.89 for NOK
and EUR, respectively, there is no a clear linear relation-
ship between these values and the inverse of the standard
deviation (r2 values 0.47 -DET-, 0.58 -LAM- for NOK and
0.47 -DET-, 0.45 -LAM- for EUR). In fact the relationship
in this case is sigmoidal. This means that they will tend to
highlight or smooth certain features as we will see below.
In order to extract more information from RQA measures,
we have compared the mean values of DET and LAM with
the mean values of the inverse of the standard deviation
(StDev) during the periods between changes in weather
conditions (for EUR Fig. 6, left, and Fig. 7 left for NOK)
and the periods between the entrance of new states in Nord
Pool (Fig. 6 right for EUR, Fig. 7 right for NOK). In both
cases, it is possible to observe that using RQA, the changes
in the means are more evident (the steps are higher) than
using the inverse of the standard deviation. Then, using
the RQA measures it is possible to improve the detection
of changes in the time series analyzed.

4. CONCLUSIONS

Nonlinear time series analysis has been carried out for
the Nord Pool time series. The saturation in the space time
separation plot shows that the time series may be consid-
ered close to stationary. This is in contrast to other high
frequency time series, such as exchange rates, in which
there is no saturation, which is typical of non-stationary
time series. We have shown that the inverse of DET and
LAM are correlated with the volatility of the time series.
Therefore, we may conclude that they provide another
method to measure volatility in financial time series.

We have compared the information given by these RQA
parameters and the standard deviation, and have calcu-
lated the mean values of these three quantities between the
periods in which there were important changes in weather
conditions or in correspondence of which there was the
incorporation of new states into the Nord Pool.

We have shown that DET and LAM detect these changes
more clearly than the standard deviation. The future devel-
opments of this work will be to find a correlation between
market prices (or some related variable such as volatility,
DET, LAM) and the likelihood of blackouts.
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