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considered as a measure for their busyness, which is further used for preferential removal

of nodes and attack simulation. Analyses of the attack vulnerability are carried out for sev-

eral generic graphs, generated according to ER and BA algorithms, as well as for some
examples of manmade networks. It was found that a modal weight based attack causes sig-

gg.c755:.7k nificant disintegration of manmade networks by removing a small fraction of the busiest

02.10.0x nodes, comparable to the one based on the node degree and betweenness centrality.
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1. Introduction

Vulnerability of complex networks is an issue that has been studied from various aspects. The definition of vulnerability
itself is still a subject of discussion. As a concept, vulnerability has been introduced in several fields including psychology,
sociology, political science, economics, epidemiology, biology, environmental and geosciences, and engineering [1]. In dictio-
nary definitions of “vulnerable”, a common denominator is references to deliberate actions (threats), e.g., “susceptible to
attack”, and “open to attack or assault by armed forces” [2]. However, there is no generally accepted definition of the concept
vulnerability even if we only consider technical, or engineering applications. Below we will give a few examples of possible
definitions of vulnerability in relation to technical systems. Einarsson and Rausand [3] study industrial systems, and define
vulnerability as the properties of an industrial system; its premises, facilities, and production equipment, including its hu-
man resources, human organization and all its software, hardware, and net-ware, that may weaken or limit its ability to en-
dure threats and survive accidental events that originate both within and outside the system boundaries. Berdica defines
vulnerability in the road transportation system as a susceptibility to incidents that can result in considerable reductions
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in road network serviceability [4]. In the field of information security, vulnerability is commonly thought of as a weakness in
the security system that might be exploited to cause harm or loss. Morakis et al. [5] define vulnerability as a measure of the
exploitability of a weakness”. In structural engineering, the term vulnerability is often used to capture the susceptibility of a
component or a system to some external action. Thus, a structure is vulnerable if any small damage produces disproportion-
ately large consequences [6]. Finally, vulnerability is also a topic in mathematics. In the branch of discrete mathematics
called graph theory, vulnerability implies a lack of resistance of the graph to the deletion of nodes and edges [7].

When investigating the issues related to system functionality, under special circumstances, some authors tend to speak of
reliability, rather then vulnerability of the system. IEEE defines reliability as the ability of a system or component to perform
its required functions under stated conditions for a specified period of time [8]. Though it might be understood that vulner-
ability is marly a complement of vulnerability, it is not the case, since the reliability takes into consideration both the failure
of certain segment of the system as well as the system as a whole, when the segment of the system fails, while the vulner-
ability considers only the later.

In complex infrastructure networks nodes are entities that produce, transform or consume a resource (e.g., generators,
substations or loads in electricity networks), while the edges are physical or virtual entities linking the nodes and enabling
flow of a physical quantity, information or influence. Many years of experience have generated a consistent system of sta-
tistical measures describing properties that are common to most of the real-life networks. Several generic models such as
Erdos-Renyi (ER random graph), Watts-Strogatz (WS small world), and Barabasi-Albert (BA scale-free) models have been
established and investigated [9-16]. In several papers by Albert et al. error and attack tolerance of complex networks were
studied and some general conclusions, further confirmed through many other real-life examples [2], were derived. The pref-
erential removal of nodes and edges, which is a way to model attacks, in the aforementioned papers was based on the cen-
trality measures. Thus, the effects of nodes removal according to their degree and betweenness centrality on the network
fragmentation, giant component size, the diameter of the network, average shortest path and efficiency were investigated
[15]. It was shown in heterogenous networks (scale-free) that the diameter increases dramatically when they’re the subject
of attacks, while in the homogenous networks there is no significant difference as to whether the nodes are chosen randomly
(removals referred to as errors) or preferentially according to their connectivity or betweenness centrality. In real-life net-
works, such as power grids, urban networks, communication networks, centrality measures are not always the best way to
assess the nodes or edges busyness. In this work we apply the methods from structural dynamics based on modal analysis to
investigate complex networks and their vulnerability. We make an attempt to find the different modes of flow in a complex
structure and to assign modal weight to each node and edge. We further use this data to rank the nodes and edges by their
modal weight and to simulate attacks based on the modal rank.

2. A brief description of the methodology

The investigations of the complex networks attack vulnerability are usually carried out by tracking the changes in topo-
logical measures after a network is subjected to attacks. Numerical studies on network robustness were first applied to the
Internet and a sample of the World Wide Web [11,17]. Albert et al. have studied how the properties of the mentioned net-
works change when a fraction f of the nodes is removed [11]. The nodes are randomly deleted to simulate errors, or in
decreasing order of their degree to simulate attacks. It was shown that both the Internet and WWW are persistent for high
rates of random node removal, i.e., persistent to errors, but sensitive to attacks. This corresponds to the mathematical pre-
dictions for scale-free networks, confirming once more that most of the real-life examples of networks are most adequately
described by the scale-free model.

Crucitti et al. examined the dependence of average shortest path and the global efficiency of BA scale-free network and ER
random graph on the fraction of the removed nodes. It was shown that the differences between scale-free networks become
less pronounced as the fraction of removed nodes increases. The scale-free networks are the most affected by attacks, even if
a small fraction of nodes is removed (sometimes a single one) [18,19]. It is worth mentioning that as a network becomes
unconnected (larger fraction of nodes are removed), the global efficiency is a better quantity to describe the system than
the average shortest path.The preferential removals, which simulate attacks are based on the measures that generally de-
scribe connectivity of the network components, such as degree and centrality.

In this work we introduce another measure of the nodes and lines busyness, that originate from structural dynamics.
Looking at the complex networks from the structural dynamics view point, one finds analogy between a graph and a system
of point-like oscillators connected by elastic springs. Such a system has several possible vibrating modes, that can be deter-
mined by applying a so called modal analysis - a linear algebra approach enabling to find the normal vibrational modes of an
elastic oscillating system. Thus, employing the modal analysis for the purposes of vulnerability studies has two major jus-
tifications. First, the topological entities have analogs in dynamical structures. Second, the transport of a physical quantity
through a complex network can be described in a similar way as a spreading of oscillations in a mass-spring system of
oscillators.

As a first step we utilize the modal weights as a measure of the busyness or the load of nodes and lines, and explore the
correlation between the modal parameters and topological measures such as degree and centrality. For this purpose we rank
the nodes and lines according to their busyness, quantified by various criteria. Afterwards, we simulate attacks by preferen-
tial removal of nodes according to their rank by degree, modal weight and betweenness centrality, and analyze the network
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fragmentation, relative size of the giant component and diameter. Aforementioned analysis is applied on networks having
different topologies.

2.1. Spectral and modal analysis - brief theoretical background

Much relevant information about complex networks can be obtained by analyzing the topological properties of the graph
which represents the network. One of the most frequently utilized methods to examine the topological properties of a graph
is based on the analysis of the eigenvalues of the graph Laplacian, given by:

L=D-A (1)

where D is a diagonal matrix whose elements are D;; = D;, where D; (i = 1 — n) stands for the degree of the corresponding
node and A stands for the adjacency matrix[11]. The adjacency matrix entries a; get value 1 if a link exists between the nodes
i and j, or O if the link does not exist. Note that in the case of weighted graph, the diagonal degree matrix elements D;; are
calculated as a sum of the weights of all the links emerging from the node i, while the adjacency matrix entries are in fact, the
line weights [20-26]. The eigenvalues of the Laplacian are very often used to classify a network.

But, where is the analogy with the structural dynamics? If we consider a graph as a system of mass-spring oscillators,
employing an analogy between the spring constants and the link weights, the net force acting on each node would be given
by:

N N N
fi=) a0 —x) = (Zaﬁxi - Zaﬁxf> .
=1 =1 =

Note that the first sum in the equation above gives the node degree d;, thus the net force acting on the node i can be ex-
pressed as

N
f,‘ = - (dgx,‘ — Z Cl,‘ij) (3)
j=1
Stacking up the equations for each node, in the complete system of equations, the Laplacian appears:
F=-D-AX=-1X (4)

This system of equations plays a major role in Structural dynamics, since it governs the dynamics of a mass-spring grid
and is a base of the method known as modal analysis. The idea to apply this approach to complex networks, was first intro-
duced by Gutierrez et al. in a case study of vulnerability of a power grid segment [27] and further investigated in [28]. We
here give a few details on the modal analysis application. If we express the force in terms of mass as F = w?MX, it is obvious
that the equation above can be used to determine the normal vibrational frequencies. In order to quantify the influence of
each oscillating mode on each network node, one should determine the modal connectivity matrix I'. The I" matrix is defined
as

r=Lo (5)

where L' stands for the transposed Laplacian and ® is a matrix composed of the Laplacian eigenvectors. Let us denote the
modal connectivity matrix elements by y;;. Modal contributions to each node can now be determined as

wi=> [yl el (6)
=

for i = 1-n. The modal contribution is a measure of the load each node receives, thus the modal contribution w; can be used
to rank the nodes according to their busyness. In our work the modal ranking of the nodes was used to develop a strategy for
each theoretical study of the power grid vulnerability. The modal spectral analysis can be also applied to assess busyness of
lines. The modal load of a line is given by the sum of the absolute values of the differences between modal contributions of
neighboring nodes [27,29,30]

L= 17k — Vil (7)
k=1

One important question in modeling manmade networks is the way of assigning line weights. Various physical quantities
can be used to quantify the line weight. For example in a power grid those can be voltages, power transmitted through the
lines, capacity of the line etc. In our study the weights in terms of line voltages were utilized.

Applying the methodology described above we investigate the attack vulnerability of topologically different networks,
including samples generated by Erdos-Renyi and Barabasi-Albert models, as well as segments of the EU power grid, as rep-
resentatives of manmade networks (processing of the datasets used to generate power grid graphs is described in the next
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chapter) [9,11]. Modal analysis and ranking of the nodes according to their modal weight was carried out by a programming
code developed for the purposes of this work.

3. Network collation

As it was mentioned before, attacks on several segments of the EU power grid are simulated in this work. The European
electricity network is composed of four main independent AC synchronized zones. Each single zone is managed by a trans-
mission system operator (TSO) that ensures the stability of the grid and coordinates the operations between power suppliers
and distribution companies: UCTE, covering the main part of continental Europe, NORDEL, covering Scandinavia, and UKT-
SOA, consisting of the island of Great Britain. ATSOI for Ireland; other islands, like Iceland, Corsica, and Crete have their own
power grids without AC connections to the main continental network. The UCTE and NORDEL member countries which bor-
der with the synchronous system of the ex-USSR republics are not synchronously connected and are managed by a separated
TSO (BALTSO). This leaves the three EU Baltic states effectively disconnected from other EU states.

As it was mentioned before, attacks on several segments of the EU power grid are simulated in this work. The European
electricity network is composed of four main independent AC synchronized zones. Each single zone is managed by a trans-
mission system operator (TSO) that ensures the stability of the grid and coordinates the operations between power suppliers
and distribution companies: UCTE, covering the main part of continental Europe, NORDEL, covering Scandinavia, and UKT-
SOA, consisting of the island of Great Britain. ATSOI for Ireland; other islands, like Iceland, Corsica, and Crete have their own
power grids without AC connections to the main continental network. The UCTE and NORDEL member countries which bor-
der with the synchronous system of the ex-USSR republics are not synchronously connected and are managed by a separated
TSO (BALTSO). This leaves the three EU Baltic states effectively disconnected from other EU states.

For the purposes of this paper, we investigate the NORDEL, UKTSOA, and ATSOI electricity transmission grid networks (see
Figs. 1 and 2).

4. Results and discussion
4.1. Correlation between the different ranking criteria

Rankings according to connectivity, betweenness centrality and modal weight were compared and further used in devel-
oping a strategy to simulate attacks on the network.

The correlation between the ranking according to degree and betweenness centrality, as well as the modal weight and
betweenness centrality was estimated by the Spearman’s correlation coefficient. This correlation coefficient between two
lists of numerical values x and y can be calculated as follows:

— UCTE
— NORDEL
—— UKTSOA
—— ATSOI

A S

Fig. 1. European electricity independent grid networks.
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Electricity .
) X Number of edges Number of Vertices
independent grid
UCTE 5305 4200
NORDEL 64l 524
UKTSOA 492 393
ATSOI 60 49

Fig. 2. Basic statistics on the extracted independent electricity networks.

W —n/6-T,—Ty -3}
V(1 —n)/6 —2T,)((n* —n)/6 — 2T,)

where n is the length of the lists of values, r; is the rank difference between x; and y;, Ty is the correction term for ties in x-list
and T, is the correction term for ties in y-list. We examine the correlation between the lists of nodes’ degrees and between-
ness centralities, and the lists of modal weights and betweenness centralities for several BA scale-free and ER random graph
realizations. The average correlation coefficient for the investigated BA realizations between the degree and betweenness
centrality rankings is found to be 0.765502, while for the random ER graphs 0.67274.

The Spearman’s correlation coefficient between the rankings according to the modal weight and the betweenness central-
ity is about 0.56462, while the correlation between modal ranking and closeness centrality is about 0.5. The correlation be-
tween the centrality measures and modal weights is graphically represented in Figs. 3-5.

Obviously there is a positive, but relatively low linear correlation between the rankings, so it will be of significant impor-
tance to apply these different assessing criteria complementary, taking into account parameters that are related with the
connectivity, centrality, and load.

Throughout our research we found the modal weight of the nodes a reliable measure for a node utilization and busyness
especially for manmade networks (power grids, urban networks, internet), where the flow of the physical quantity trans-
ported through the network is of importance. This is what motivate us to analyze the attack vulnerability of complex net-
works by preferential removal of the nodes according to their modal weight and to compare the results with those obtained
by preferential removal according to the standard measures.

(8)

4.2. Attack vulnerability

The attack vulnerability of the considered networks is examined by two different strategies. First one, so called non-adap-
tive strategy, uses the initial ranking of the nodes, without recalculating the properties after each removal of nodes. In the
second adaptive strategy, the modal weight, as well as betweenness centrality and nodes’ degree are recalculated after each
deletion of nodes, and the new ranking is utilized. The adaptive strategy gives more reliable results, since a deletion of a node
that is strongly connected by several other nodes in a certain mode causes transition to some other flowing mode. Usually in
the other flowing mode, new nodes are activated and the ranking changes.

The attack vulnerability in this analysis is measured through the dependence of the number of clusters, network diam-
eter, and relative size of the giant component on the fraction of deleted nodes. Giant component of a graph is the largest
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Fig. 3. Correlation between the modal weight and degree of the nodes in an ER graph (1000 nodes, average degree 3.5).
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Fig. 4. Correlation between the betweenness and degree of the nodes in an ER graph (1000 nodes, average degree 3.5).
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Fig. 5. Correlation between the modal weight and betweenness of the nodes in an ER graph (1000 nodes, average degree 3.5).

subgraph, that is still connected. The ratio of the size (number of nodes) of the giant component to the total number of nodes
of the considered graph is known as a relative size of the giant component.

The failure of the random ER network considered in this work, tracked by the decrease in the relative size of the giant
component with the deletion of nodes is represented in Fig. 6. The same analysis for the scale-free graph is given in Fig. 7.

In agreement with the recent findings [2,8-10], our results confirm that the scale-free networks are more vulnerable than
ER networks, when submitted to attacks (preferential removal of nodes). Analyzing the graphs, one can notice that deletion
of nodes of the considered scale-free and ER networks according to their connectivity and betweenness centrality is a more
efficient strategy to disintegrate a generic network than a modal weight based strategy.

Hetwork failure due to preferential removal
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Fig. 6. The dependence of the relative size of the giant component on the fraction of removed nodes for a random ER graph with 1000 nodes and average
degree 3.5 - non-adaptive strategy.
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Hetwork failure due to attack by preferential

removal of nodes
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Fig. 7. The dependence of the relative size of the giant component on the fraction of removed nodes for a random SF graph with 1000 nodes and average
degree 3.5 - non-adaptive strategy.

The examples of manmade networks, represented by NORDEL, UKTSOA, and Ireland synchronized zones of the European
power grid are also subjected to this analysis. Modal weight distribution among the nodes for a certain mode for one of the
investigated sectors is shown in Fig. 8, just as an illustration.

Two approaches are implemented on the power grid segments. The first one is a basic topological analysis, carried out by
neglecting - setting to one the weights of the edges, and the second one includes the weights of the lines.

Fig. 9 shows the dependence of the giant component relative size on the fraction of the removed nodes, by the adaptive
approach for unweighted NORDEL synchronized zone. Neglecting the weights of power transmission lines allows only a
topological analysis of manmade networks. For comparison, the results obtained by simulating attacks based on the nodes
degree and their modal weight are represented on the same graph. Obviously, the preferential removal based on the nodes
degree is more efficient for small fractions of removed nodes (0—0.03) and as the fraction of the removed nodes increases the
both strategies have nearly the same efficiency, except for some regions where either strategy leads faster disintegration (see
the interval between 0.03 and 0.05, where modal weights based strategy is more efficient). For example, in the interval be-
tween 0.03 and 0.05, the attacks based on modal weight are more successful.

Fig. 10 presents the attack vulnerability, measured by the changes of the relative size of the giant component for the same
synchronized zone, but considering the weights of lines as well. The general conclusion that the deletion by degree is more
efficient at the beginning of the attack, and after several removals the strategies are equally efficient still stands. Similarity
between the results obtained through pure topological analysis and physical analysis indicates that one can assess a man-
made network vulnerability, at least qualitatively, even with a limited knowledge on the physical properties of the network.
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NORDEL Topolo gy Attack Vulnerability

11—

0.9 4 “‘\

0.9 |

0.7 1 ~\
0.5
0.5 4

0.4 4 -—.,l

0.3 1

Size of giant component (% )

0.2 1
0.1 4

0 \ T ‘ T " T T
0 0.0z 0.04 0.06 0.08 0.1 012 0.14 016

Mode ranking attack == =Madal_weight_ranking | % of disconected nodes

Fig. 9. Topological assessment of the attack vulnerability of a power grid segment (unweighted), having 524 nodes and 641 links, simulated by an adaptive
strategy.
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Fig. 10. Attack vulnerability of a power grid segment (weighted), having 524 nodes and 641 links, simulated by an adaptive strategy.

Results for the rest two synchronized zones, UK and Ireland, analyzed through our simulations are shown in Figs. 11-14.
Fig. 11 illustrates the giant component relative size versus the fraction of removed nodes for UK synchronized zone, modeled
by unweighted graph, while Fig. 12 gives the same analysis for the weighted graph. Comparison of network disintegration by
applying degree of the nodes and modal weights as measures of the nodes busyness leads to similar conclusions as in the
case of NORDEL zone, elaborated in the previous paragraphs. The topological analysis of the attack vulnerability for Ireland
synchronized zone, represented in Fig. 13, as well as the analysis including line weights (Fig. 14) indicates higher efficiency of
the modal weights based strategy in wider range of removed nodes fraction, compared to previous cases. Probably the only
reason for this result is the size of the network.

To summarize, analyzing the attack vulnerability, measured through the decrease of the giant component relative size
with preferential removals of nodes by the two adopted criteria (Figs. 9-14) suggest that the modal weight could be an effi-
cient method to disintegrate a manmade network.

5. Conclusions

In this paper a modal analysis based study of the attack vulnerability of generic and manmade networks was presented.
The modal analysis was for the first time applied to random graphs generated by the basic Erdos-Renyi and scale-free
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UK Topology Attack Vulnerability
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Fig. 11. Topological assessment of the attack vulnerability of a power grid segment (unweighted), having 393 nodes and 492 links, simulated by an
adaptive strategy.
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Fig. 12. Attack vulnerability of a power grid segment (weighted), having 393 nodes and 492 links, simulated by an adaptive strategy.

Barabasi-Albert algorithms. The modal weight was introduced as an assessment criterion of the nodes and lines busyness,
which was further used to rank the nodes. Spearman’s correlation coefficients between the rankings based on centrality
measures at one side, and modal weights on the other, indicate low correlation. Attack simulations were carried out by using
two different strategies — adaptive and non-adaptive. The preferential removal of the fractions of nodes was based on the
three different criteria (the nodes connectivity, betweenness centrality, and modal weight).

It was confirmed once more that the scale-free BA graphs are more sensitive to attacks than random ER graphs, even
when the attacks are planned using the results of modal analysis. In addition, the attack vulnerability analysis was also
applied to several examples of manmade networks. From the topological point of view attacking the network according
to the node degree proved to be the most efficient strategy, especially for generic networks. However, the disintegration
of the manmade networks caused by a modal weight based attack at initial steps is as significant as a disintegration
based on the node degree or betweenness centrality. The low correlation between the node degree and modal weight
shows that the most connected nodes are not at the same time the most loaded nodes, so the modal analysis could
be sufficient to detect the busiest nodes. Even though the rate of fragmentation is higher when the attacks are planned
by the node degree, a busiest node deletion can cause overloading of the neighboring nodes and provoke a cascading
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Fig. 14. Attack vulnerability of a manmade network, simulated by an adaptive strategy, for weighted graph, having 49 nodes and 60 links.

failure. Thus, a modal analysis could be a complementary method for vulnerability assessment to the methods based on
centrality measures, aiming at detection, protection, and safety of the busiest components.
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