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Abstract

The paper proposes to study spreading characteristics of malware using
a stochastic model, based on the Interactive Markov Chains, that belongs to
the special case called “influence model.” We generalize influence model so
that the status of a node and the influences a node exerts from neighbors
depend on the current status of the node and the statuses of its neighbors.
Such generalized model is flexible enough to model various phenomena in-
cluding spreading of failures in power grid, malwere propagation in computer
networks, and spreading of ideas in social networks.

As a particular example we discuss the spreading of e-mail viruses through
a network. Although we have focused on the propagation of e-mail viruses,
the approach proposed here is general enough to be adapted to describe other
malware propagation. Our model is numerically and analytically tractable.
We consider three stochastic models: susceptible-infective-removed (SIR),
susceptible-infective-immune (SIM), and susceptible-infective-immune-susceptible
(SIMS). For SIMS model and arbitrary network topology closed expressions
for average number of infected and immune nodes when time goes to infin-
ity are found. We show that epidemic threshold for SIMS model does not
depend on the network topology.

Key words: malware propagation, computer viruses, stochastic models,
malicious software, susceptible-infective-immune model

1. Introduction

Protecting a computer system from malicious attacks is a key challenge to
network security and management. Malware (short for malicious software)
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is designed specially for either damaging or disrupting a computer system.
The terminology covers over an entire gamut of hostile softwares including
viruses, Trojan Horses, and network worms [1, 2].

Several approaches have been proposed to model and simulate malware
spreading in complex networks with different topologies. An epidemiologi-
cal model, which is suitable to analyze virus spreading in random graphs,
was presented in [3]. In Ref. [4] a model for virus propagation in arbi-
trary topologies was proposed and epidemic threshold of virus infection was
obtained. The authors proved that, under reasonable approximations, the
epidemic threshold for a network is closely related to the largest eigenvalue
of its adjacency matrix [4]. The spread of Code Red, taking into consid-
eration of the human countermeasures and the worms impact on Internet
infrastructure, was modeled in [5]. The propagation of active worms employ-
ing random scanning for investigating the spread of localized-scanning worms
was studied in [6]. Epidemiological model for investigating the requirements
for containing the self-propagation worm with random target selection was
applied in [7]. In Ref. [8] the authors addressed the question of what topo-
logical properties of the graph determine the persistence of epidemics. In
Ref. [9] the authors developed an analytic framework for modeling the dy-
namics of malware propagation in networks of smart phones that specifically
accounts for the mobile nature of these devices. The focus of work in Ref.
[10] is on modeling the spread of topological malwares, which is important for
understanding their potential damages, and for developing countermeasures
to protect the network infrastructure. The authors of Ref. [11] modeled the
spread of malware in decentralized, Gnutella type of peer-to-peer networks.
In the article [12], the author considered the effects of Internet worms on per-
sistently unpatched hosts and hosts for which vulnerabilities are refreshed.
The focus of Ref. [13] was on spreading dynamics of malware that can repli-
cate itself on other nodes in a network of wireless sensing devices.

This paper proposes to study the behavior of malware, including their
spreading characteristics. To this purpose we build a stochastic model based
on Influence Model that provides a probabilistic analysis of the system. Al-
though we have focused on the propagation of e-mail viruses, the approach
is general enough to be adapted to describe other kinds of malware. The
concept of interactions on networks is not new, and has appeared in vari-
ous forms in a variety of fields. The influence model [14] differs from other
previous models of interactions (such as stochastic Ising model, cellular au-
tomata, infinite particle system, voter model, interactive Markov chain) in
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several ways, two most important are (1) each site (node) may contain an ar-
bitrary (finite) local chain and (2) the network may have an arbitrary (finite)
graph and influence structure. The influence model [14, 15, 16] is a simple
(and mathematically tractable) model of random, dynamical interactions on
networks. It consists of a network of nodes, each with a status that evolves
over time. The evolution of the status at a node is according to an internal
Markov chain, but with transition probabilities that depend on, not only the
current status of that node, but also on the statuses of the neighboring nodes.

Our work is an extension of the work by Garetto et. al. [17] in several
directions. First, we generalize the influence model so that the status of a
node and the influences a node exerts from neighbors depend on the current
status of the node and the statuses of its neighbors. Second, we build a
model for malware spreading, which is analytically and numerically tractable.
Third, we consider three stochastic models: susceptible-infective-removed
(known as a SIR model), susceptible-infective-immune (SIM model), and
susceptible-infective-immune-susceptible (SIMS model). Finally, we study in
detail the spreading of malware using the SIMS model for arbitrary network
topology. The rest of the paper is organized as follows: we describe the
influence model and its generalization in Section 2. In Section 3 we propose
our model and study its properties. Section 4 is devoted tot the analysis of
the SIMS model; in particular, we show under what condition the spreading
of the viruses dies out in the network. Finally, we conclude the paper in
Section 5.

2. Influence model and its generalizations

2.1. Binary Influence Model

The influence model is suggested in [14] as a model of random, dynamical
interactions on networks. We refer the reader to [14] for a full account of the
model and its properties; here we give a brief description of the model. Define
the directed graph of a N × N matrix G, denoted by Γ(G), as the directed
graph on nodes 1 to N , where a directed edge from i to j, denoted by (i, j),
exists if and only if gij 6= 0. The edge weight given by gij and is the amount
of influence that node j exerts on node i. Consider a graph with N nodes,
referred to as sites; each site has a status value that varies over time as it is
‘influenced’ by the neighbors. Assume that we are given an N × N matrix
D = [dij] (dij ≥ 0), where dij is defined as dij = gij/

∑N
j gij. Then D is a

stochastic matrix, that is
∑

j dij = 1 for each i. The graph Γ(DT ) will be
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called the network influence graph. An edge (i, j) exists on this graph if the
status of j can be influenced by the status of i. The weight on edge (i, j)
can be interpreted as the amount of influence that i exerts on j relative to
the total amount of influence that j receives. The total amount of influence
received by any site is equal to the sum of incoming edge weights, which is
1, because D is stochastic matrix.

We first discuss in more detail the binary influence model. For the binary
influence model, the status of the site i is represented by 0 or 1. The values 0
or 1 may represent any two different statuses such as ‘on’ vs. ‘off’, ‘healthy’
vs. ‘sick’, or ‘normal’ vs. ‘failed’. Let pT

i (k) = [p0
i (k) p1

i (k)] be 2-dimensional
probability vector of node i at time k. p0

i (k) and p1
i (k) are the probabilities

that node i at time k is in status ON and OFF, respectively. Further, let
sT

i (k) =
[
s0

j(k) s1
j(k)

]
be 2-dimensional status vector of node i at time k.

The status vector can only have one element equal to 1; the other element is
equal to 0. If s0

j(k) = 1 then the node i is in status ON, if s1
j(k) = 1 then the

node i is in status OFF. Let dij = gij/
∑N

j=1 gij be the normalized influence
that node j exerts on node i,

∑
j dij = 1.

Let Aij be a 2×2 Markov transition matrix of the interactions of statuses
of nodes i and j,

Aij =

[
a00

ij a01
ij

a10
ij a11

ij

]
(1)

a00
ij = Prob[s0

i (k) = 1|s0
j(k − 1) = 1] and a01

ij are the probabilities that node
i in the next time step will go to status ON and OFF, respectively, if node’s
j current status is ON. a10

ij and a11
ij are the probabilities that node i in the

next time step will go to status ON and OFF, respectively, if node’s j current
status is OFF.

The evolution equations of the influence model are defined as:

pT
i (k + 1) =

N∑
j=1

dijs
T
j (k)Aij, (2)

sT
i (k + 1) = Bernoulli[pT

i (k + 1)], (3)

The operation Bernoulli[·] can be thought of as flipping N independent
coins, at each time step, to realize the two entries of [s0

i (k) s1
i (k)], where the

probability of the i-th coin turning up heads (status ON) is p0
i (k). Note that

in the interactions between nodes i and j, the status if node i in the next
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time step depends only on the status of node j in the previous time step, i.e.
the status of node i in the next time step does not depend on its own current
status. This is a limitation of the influence model.

2.2. Binary status dependent influence model

We present now a binary status dependent influence model, in which
node’s status, at the next time step, depends on its own current status.
For this model, we replace Eq. (2) of the binary influence model with the
following equation:

pT
i (k + 1) = diis

T
i (k)Aii +

N∑

j=1,j 6=i

dijs
T
i (k)

[
sT
j (k)A0

ij

sT
j (k)A1

ij

]
(4)

In this model the interactions of statuses between nodes i and j are described
by two Markov transition matrices:

A0
ij =

[
α00

ij α01
ij

α10
ij α11

ij

]
,

and

A1
ij =

[
β00

ij β01
ij

β10
ij β11

ij

]
.

A0
ij is the Markov transition matrix of interactions between nodes i and j

when node i is in status ON, and A1
ij is the Markov transition matrix of

interactions of statuses between nodes i and j when node i is in status OFF.

Proposition 1. If A0
ij = A1

ij = Aij, then Eq. (4) reduces to Eq. (2).

Proof. Let e is all ones column vector with number of ones as the number
of statuses of a node. Note that sT

j (k)e = 1.

pT
i (k + 1) = diis

T
i (k)Aii +

N∑

j=1,j 6=i

dijs
T
i (k)

[
sT

j (k)Aij

sT
j (k)Aij

]

= diis
T
i (k)Aii +

N∑

j=1,j 6=i

dijs
T
i (k)esT

j (k)Aij

= diis
T
i (k)Aii +

N∑

j=1,j 6=i

dijs
T
j (k)Aij =

N∑
j=1

dijs
T
j (k)Aij

¥
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2.3. Binary status-and-influence dependent influence model

We now present a novel status-and-influence dependent influence model.
In this model, the influence that node j exerts on node i depends on the
current statuses of nodes i. Let d0

ij be the normalized influence that node
j exerts on node i when node i is in status ON. In a similar way, d1

ij is the
normalized influence that node j exerts on node i when node i is in status
OFF. For this model, the evolution equation is defined as

pT
i (k + 1) = sT

j (k)diag(d0
ii, d

1
ii)Aii +

N∑

j=1,j 6=i

sT
i (k)

[
d0

ijs
T
j (k)A0

ij

d1
ijs

T
j (k)A1

ij

]
, (5)

where d0
ij = g0

ij/
∑N

j=1 g0
ij and d1

ij = g1
ij/

∑N
j=1 g1

ij and, g0
ij and g1

ij are the total
amount of influence that node j exerts on node i when node i is in status 0
and 1, respectively. The operator diag(·), makes a diagonal matrix from a
vector.

Proposition 2. When d0
ij = d1

ij = dij, and A0
ij = A1

ij = Aij then Eq. (5)
reduces to Eq. (4).

Noting that diag(dii, dii) = diiI, where I is the identity matrix, the proof
is the same as for the status dependent binary model.

2.4. General status-and-influence dependent Influence Model

We now discuss general influence model: each site in the general influence
model is allowed to have different Markov chain. The model allows also an
arbitrarily connected structure of sites defined by a weighted directed graph
D, in which dij is the weight associated to the edge directed from i to j
(dij is equal to zero if no edge exists from i to j). Each weight dij takes
a value in the interval [0, 1], and represents the amount of influence that i
exerts on j relative to the total amount of influence that j receives, which
is normalized to one:

∑
j dij = 1. Let Mi be the order of the local Markov

chain at the site i for 1 ≤ i ≤ N , where N is the number of sites (nodes).
At time k, the status of site i is represented by a length-Mi status vector,
an indicator vector containing a single 1 in the position corresponding to the
present status, and 0 everywhere else:

si(k) = [s1
i (k) s2

i (k) . . . sMi
i (k)]T ,
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where sn
i (k) = 1 if only if the status of the site i at time k is n, 1 ≤ n ≤ Mi.

Let
pi(k) = [p1

i (k) p2
i (k) . . . pMi

i (k)]T

be the probability mass-function (PMF) of the site i at time k. The transition
matrix Aij (which has a number of rows equal to the number of statuses in
j and a number of columns equal to the number of statuses in i) completely
specifies the way in which site j influences site i. In the influence model the
evolution of each site is constrained to take the multi-linear form

pT
i (k + 1) =

N∑
j=1

dijs
T
j (k)Aij (6)

sT
i (k + 1) = MultiRealize[pT

i (k + 1)], (7)

where MultiRealize[·] performs a random realization for each element of the
vector pT

i (k + 1) in the same manner as in a binary influence model.
We now generalize the influence model one step further to general status-

and-influence dependent influence model. Let
{
Ami

ij

}Mi

mi=1
be Mi Markov

transition matrices that describe the interactions between node i with Mi

statuses and node j with Mj statuses. These matrices are all Mj ×Mi, i.e.
matrices with Mj rows and Mi columns. The (mj,mi) element of the Aki

ij

matrix is the probability that in the next time step node i will be in status
mi if its current status is ki. Let dmi

ij be the influences that node j exerts on
node i, when node i is in a status mi.

The general status-and-influence dependent influence model is described
when Eq (6) is replaced by the following equation:

pT
i (k+1) = sT

i (k)diag(d0
ii, d

2
ii, . . . , d

M−1
ii )Aii+sT

i (k)




∑N
j=1,j 6=i d

1
ijs

T
j (k)A1

ij∑N
j=1,j 6=i d

2
ijs

T
j (k)A2

ij
...∑N

j=1,j 6=i d
Mi
ij sT

j (k)AMi
ij




(8)
where dmi

ij = gmi
ij /

∑N
i=1 gmi

ij and gmi
ij is the total amount of influence that

node j exerts on node i when node i is in status mi.

Proposition 3. Each pl
i(k + 1), l = 1, . . . Mi, is a valid probability.

Proof. First, we notice that pl
i(k + 1) ≥ 0 because Al

ij, dl
ij, and sT

j (k) are
nonnegative, and pT

i (k + 1)e = 1.
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Since,

pT
i (k + 1)e = sT

i (k)diag(d0
ii, d

2
ii, . . . , d

M−1
ii )Aiie

+ sT
i (k)




∑N
j=1,j 6=i d

1
ijs

T
j (k)A1

ije∑N
j=1,j 6=i d

2
ijs

T
j (k)A2

ije
...∑N

j=1,j 6=i d
Mi
ij sT

j (k)AMi
ij e




= sT
i (k)diag(d0

ii, d
2
ii, . . . , d

M−1
ii )e + sT

i (k)




∑N
j=1,j 6=i d

1
ijs

T
j (k)e∑N

j=1,j 6=i d
2
ijs

T
j (k)e

...∑N
j=1,j 6=i d

Mi
ij sT

j (k)e




= sT
i (k)[d0

ii, d
2
ii, . . . , d

M−1
ii ]T + sT

i (k)




∑N
j=1,j 6=i d

1
ij∑N

j=1,j 6=i d
2
ij

...∑N
j=1,j 6=i d

Mi
ij




= sT
i (k)[d0

ii, d
2
ii, . . . , d

M−1
ii ]T + sT

i (k)




1− d1
ii

1− d2
ii

...

1− dMi
ij


 = 1

(9)

the proof is completed. ¥

Proposition 4. Assume that: (i) d1
ij = d2

ij = . . . dMi
ij = dij , and (ii) A1

ij =

. . . = AMi
ij = Aij. Then Eq. (8) reduces to Eq. (6).

The proof is the same as for the binary model.

2.5. Properties of the model

The model developed in the previous section (equations (8) and (7)) is a
stochastic model based on the Interactive Markov Chains (IMC) framework.
Because of the exponential growth in the number of states, large IMCs are
extremely difficult to solve numerically, even for a few tens of nodes, so
that it is necessary to resort to discrete event simulations. However, our
model belongs to the special case of IMC called “influence model”, which
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provides a particular but tractable representation of dynamic interactions on
networks. In a similar way as for the original influence model (which is status
independent model), for our model it is possible to obtain the marginal status
probabilities of each site by means of a transition matrix whose dimension is
equal only to the sum of the dimensions of the local chains. Therefore, our
model is computationally equivalent to the original influence model.

The state variable of node i, sl
i(k + 1), is a binary random variable (RV)

that describes the state l of node i. This RV is conditionally independent of
all other state variables of all nodes j = 1, . . . , N and j 6= i at time k+1 given
all nodes state variables at time k. Let us define a state vector for all states
of all nodes as: s(k) = [s1(k)T s2(k)T . . . sN(k)T ]T , and a probability state
vector, equivalently, as p(k) = [p1(k)T p2(k)T . . . pN(k)T ]T . Then the
conditional independence can be mathematically formulated as:

P

[
N⋂

i=1

sl
i

∣∣∣s(k)

]
=

N∏
i=1

P [sl
i(k + 1)|s(k)], (10)

where P (·) is the probability operator. Thus the conditional expectation of
intersection of statuses sl1

i (k + 1) and sl2
j (k + 1), given s(k) is a product of

expectations:

E[sl1
i (k + 1) ∩ sl2

j (k + 1)|s(k)]

= E[sl1
i (k + 1)|s(k)]E[sl2

i (k + 1)|s(k)] (11)

where E[·] is the expectation.
One can compute the status probabilities of node i at time step t = k +1

by knowing only the status probabilities of all nodes at time step t = 0.
Indeed, from

E[si(k + 1)|s(k)] = Prob[si(k) = ei] = pi(k + 1){s(k)}

which actually is equation (8), it follows that the probability vector of node i
at time step k +1 depends on only the elements of vector s(k). Equivalently,

E[s(k + 1)|s(k)] = Prob[s(k) = e] = p(k + 1){s(k)}

and the probability vector of all nodes at time step k + 1 depends on only
the elements of the vector s(k)
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Taking the expectation again, now on s(k) we obtain

E [E[s(k + 1)|s(k)]|s(k − 1)] = E [p(k + 1){s(k)}|s(k − 1)]

= p(k + 1){E[s(k)|s(k − 1)]} = p(k + 1){p(k){s(k − 1)}}
where we have used the property (11) to show that

E[p(k + 1){s(k)}|s(k − 1)] = p(k + 1){E[s(k)|s(k − 1)]}.
Taking the expectation k + 1 times we finally obtain p(k + 1) as a function
of s(0):

E[E . . . E[s(1)|s(0)]] . . .] = p(k + 1){p(k){. . .p(1){s(0)} . . .}}.
We now present the algorithm for computing the influence probabilities.

Let si(0) for i = 1, . . . , N be the status vectors for all nodes at time step
t = 0. Let Fi{·} is the function that describes the relations between pi(k) and
{s1(k− 1), . . . , sN(k− 1)}, i.e. the function in Eq. (8). Then the probability
vectors pi(k) for i = 1, . . . , N at time step t = k are:

For t = 1, . . . , k
For i = 1, . . . , N
pi(t) = Fi{s1(0), . . . , sN(0)}

end
For i = 1, . . . , N
si(0) = pi(t)

end
end





(12)

The algorithm (12) is the mathematical algorithm for computing the proba-
bilities in both models: original influence model Eq. (6)–(7) and our model
Eq. (8)–(7), the only difference being that one can write Eq. (6) in more
compact form as a matrix equation, see [14].

3. Modeling malware spreading

3.1. Preliminaries

There is a substantial literature on the SIR models in epidemiology, start-
ing with the work of Kermack and McKendrick [18]. A commonly used
approach in early work was to approximate a stochastic model by a deter-
ministic one in a large population (law of large numbers) limit. Here we
discuss two stochastic models of viruses spreading.
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3.1.1. Stochastic Reed-Frost model

Consider a closed population of N individuals, connected by a neigh-
borhood structure which is represented by an undirected, unweighted graph
G = (V, E) with node set V and edge set E. One of the earliest stochastic
SIR models studied in depth, because of its analytical tractability, is the
Reed-Frost model. Each node can be in one of three possibly states, suscep-
tible (S), infective (I) or removed (R). Let A denote the adjacency matrix
of the undirected graph G, i.e., aij = 1 if (i, j) ∈ E and aij = 0 otherwise.
Each node that is infected at the beginning of a time slot attempts to infect
each of its neighbors; each infection attempt is successful with probability β
independent of other infection attempts. Each infected node is removed at
the end of the time slot. Therefore, the the probability that a susceptible
node i becomes infected at the end of time slot k is given by:

pI
i (k + 1) = 1−

N∏
j=1

(1− βaijs
I
j (k)) (13)

where sI
j (k) denotes the indicator that node j is infected at the beginning of

time slot k.

3.1.2. Garetto-Gong-Towsley model

Garetto, Gong, and Towsley recently proposed a model for e-mail viruses
spreading [17]. As in the previous example, consider a closed population of N
individuals, connected by a neighborhood structure which is represented by
an undirected, weighted graph G = (V, E) with node set V and edge set E.
Each node can be in one of three possibly states, susceptible (S), infective (I)
or immune (M). We assume that the weighted matrix D = (dij) is stochastic.
The model equations are:

pS
j (k + 1) = 1− pI

j (k + 1)− pR
j (k + 1)

pI
j (k + 1) = pI

j (k) +
∑N

i=1 cjdijp
IS
ij (k)

pM
j (k + 1) = pM

j (k) +
∑N

i=1(1− cj)dijp
IS
ij (k),

(14)

where dij are the edge weights, cj is the click probability of site j and pIS
ij (k) is

the joint probability that at time step k, the site i is infected, while the site j
is still susceptible. Sum of all incoming edge weights into a node is one. This
can be interpreted as follows: the edge weight dij represents the probability
that during a time step a user checks if any message has been delivered from
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source j to destination i. If the sum of all edge weights is smaller then one
than a self loop is added in order to reach the value of one. Note that the edge
associated with a node is just the probability of reading the message, not yet
deciding what to do with its content. A click probability cij is introduced
that user i will open the attachment sent from user j. This means that user
i with probability 1− cij once an for all will block that attachment sent from
user j. The decision of opening the attachment will not occur if new copies
of the virus are received. The system (14) is not numerically tractable, since
the joint probabilities pIS

ij are unknown, and there does not appear to exist
an easy way to compute them exactly.

3.2. SIM Model

In this subsection we show that SIM model (or Garetto-Gong-Towsley
model) belongs to the class of status-and-influence dependent influence model
discussed in the section 2. The SIM model presented in [17] assumes that
when a node reaches status infected or immune it stays in that status forever.
With the status-and-influence dependent influence model we can build a
model that fulfills this assumption. The general influence model equation
are:

pT
i (k+1) = sT

i (k)diag(dS
ii, d

I
ii, d

M
ii )Aii+sT

i (k)




∑N
j=1,j 6=i d

S
ijs

T
j (k)AS

ij∑N
j=1,j 6=i d

I
ijs

T
j (k)AI

ij∑N
j=1,j 6=i d

M
ij sT

j (k)AM
ij


 (15)

By setting dI
ij = dM

ij = 0 for j 6= i and dI
ii = dM

ii = 1 and
∑N

j=1,j 6=i d
S
ij = 1

and dS
ii = 0 we get:

pT
i (k + 1) = sT

i (k)diag(0, 1, 1)Aii + sT
i (k)




∑N
j=1,j 6=i d

S
ijs

T
j (k)AS

ij

0T

0T


 (16)

where 0 is a column vector with 3 elements.
When the node i is in status S, if the source node j is in status S than

the destination node i will stay in status S. If the source node j is in status
I than the destination node will go in status I with the click probability cij

and will go in status M with probability 1 − cij. If the source node j is in
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status M than the destination node will stay in status S with probability 1.
This means that the destination node i can not be infected or immunized by
the source node j when the source node is immune. The transition matrix
for the status S , for i 6= j, is equal to

AS
ij =




1 0 0
0 cij 1− cij

1 0 0




When the node is self influenced it preserves it previous status, meaning
that when node is in status S, I or M it stays in status S, I or M , respectively.
The Markov chain for j = i is therefor:

Aii =




1 0 0
0 1 0
0 0 1




If we substitute equations for Aii, AS
ij, we can rewrite the equations as

follows:

pS
i (k + 1) = sS

i (k)
∑N

j=1,j 6=i dij(s
S
j (k) + sM

j (k))

pI
i (k + 1) = sI

j (k) + sS
i (k)

∑N
j=1,j 6=i cijdijs

I
j (k)

pM
i (k + 1) = sM

j (k) + sS
i (k)

∑N
j=1,j 6=i(1− cij)dijs

I
j (k),

(17)

The last equation reduces to the SIM model. We stress that as a consequence
of the Markov property of the influence model, sI

i (k), sS
i (k), and sM

i (k) are
independent random variables from all other node status random variables
at any time step k conditioned on the previous history of the nodes statuses.
Therefore, for example, we have

P (sI
i (k)sS

j (k)|s(k − 1)) =

P (sI
i (k)|s(k − 1))P (sS

j (k)|s(k − 1)).

3.3. SIR Model

Status-and-influence dependent influence model is general enough to model
various viruses spreading on networks. For example, choosing properly the
parameters of the influence model, we can obtain the following variant of the

13



SIR model:

pS
i (k + 1) = 1− sI

i (k)− sR
i (k)− sS

i (k)
N∑

j=1

δijdijs
I
j (k)

pI
i (k + 1) = sS

i (k)
N∑

j=1

δijdijs
I
j (k)

pR
i (k + 1) = sI

i (k) + sR
i (k). (18)

As in the original SIR model, here, equation (18), each node can be in one of
three possibly states, susceptible (S), infective (I) or removed (R). The edge
weight dij represents the probability that during a time step a user checks
if any message has been delivered from source j to destination i. We assign
a click probability δij that user i will open the attachment sent from user j
(and will be infected). Each infected node is removed at the end of the time
slot.

4. SIMS model

As in the previous SIM example, consider the SIM model with modified
Markov matrix Aii, set to:

Aii =




1 0 0
δ1 1− δ1 0
δ1 0 1− δ1


 , (19)

we obtain the following model equations:

pS
i (k + 1) = sS

i (k)
∑N

j=1 dij(s
S
j (k) + sM

j (k)) + δ1s
I
i (k) + δ2s

M
i (k)

pI
i (k + 1) = (1− δ1)s

I
i (k) + sS

i (k)
∑N

j=1 cdijs
I
j (k)

pM
i (k + 1) = (1− δ2)s

M
i (k) + sS

i (k)
∑N

j=1(1− c)dijs
I
j (k),

(20)

where dij are the edge weights, and cj = c for all j, is the click probability.
The nodes in statuses I and M continue to preserve their status at a rate of
1− δ1 and 1− δ2, accordingly, i.e. they convert back to status S with a rate
of δ1 and δ2, accordingly. Let X(k) =

∑N
i=1 sS

i (k), Y (k) =
∑N

i=1 sI
i (k), and

Z(k) =
∑N

i=1 sM
i (k) be the total number of susceptible, infective and immune

nodes at time k, respectively. Further, let NS = E[X(∞)], NI = E[Y (∞)],
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and NM = E[Z(∞)]. The object of interest is the number of nodes that
eventually become infected and immune, NI and NM , compared to the total
number of nodes in the network. We assume that initially only one node is
infected.

In terms of probabilities only, Eq. (20) can be rewritten as

pS
i (k + 1) = pS

i (k)
∑N

j=1 dij(p
S
j (k) + pM

j (k)) + δ1p
I
i (k) + δ2p

M
i (k)

pI
i (k + 1) = (1− δ1)p

I
i (k) + pS

i (k)
∑N

j=1 cdijp
I
j (k)

pM
i (k + 1) = (1− δ2)p

M
i (k) + pS

i (k)
∑N

j=1(1− c)dijp
I
j (k).

(21)

Equivalently NS, NI , NM can be computed using Eq. (21) as NS =
∑N

i=1 pS
i (∞),

NI =
∑N

i=1 pI
i (∞), and NM =

∑N
i=1 pM

i (∞). The main result of this section
is the following

Theorem 1. Assume that initially (for k = 0) at least one node is infected.
Then, for c < δ1

NS = N,NI = 0, NM = 0,

and for c > δ1,

NS =
δ1

c
N

NI =
δ2(c− δ1)

δ1 + c(δ2 − δ1)
N

NM =
δ1(1− c)(c− δ1)

c(δ1 + c(δ2 − δ1))
N

Proof. Let pS = [pS
1 pS

2 . . . pS
N ]T , pI = [pI

1p
I
2 . . . pI

N ]T , and pM = [pM
1 pM

2 . . . pM
N ]T ,

where pS
i = pS

i (∞), pI
i = pI

i (∞), and pM
i = pM

i (∞). We first prove that for
k →∞, pS = pSe, pI = pIe and pM = pMe. Assuming that pI

i > 0 for all i,
the following equation

pI
i (k + 1) = (1− δ1)p

I
i (k) + pS

i (k)
N∑

j=1

cdijp
I
j (k)

by setting k →∞ can be written in matrix form as

pI = (1− δ1)p
I + c× diag(pS)DpI

0 = (δ1I− c× diag(pS)D)pI .
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If we take only the 1-th element of the vector equation we get:

0 = δ1p
I
1 − cpS

1 e
TpI

0 = δ1p
I
1 − cpS

1 NI (22)

where NI is the average number of infected nodes which is a constant number
when k →∞.

If we now take the second vetor element we obtain:

0 = δ1p
I
2 − cpS

2 NI

thus

(pI
1 − pI

2) =
cN I

δ1

(pS
1 − pS

2 ) (23)

The third equation

pM
i (k + 1) = (1− δ2)p

M
i (k) + pS

i (k)
N∑

j=1

(1− c)dijp
I
j (k)

by setting k →∞ can be written in matrix form as

pM =
1− c

δ2

× diag(pS)DpI

If we take only the 1-th element of the vector equation we get:

pM
1 =

1− c

δ2

pS
1 e

TpI

pM
1 =

1− c

δ2

pS
1 NI

If we now take only the 2-th element of the vector equation we obtain:

pM
2 =

1− c

δ2

pS
2 NI

Thus

pM
1 − pM

2 =
1− c

δ2

NI(p
S
1 − pS

2 )

1− pS
1 − pI

1 − 1 + pS
2 + pI

2 =
1− c

δ2

NI(p
S
1 − pS

2 )

pI
1 − pI

2 = −
(

1 +
1− c

δ2

NI

)
(pS

1 − pS
2 ) (24)

16



From (23) and (24) we get

−
(

1 +
1− c

δ2

NI

)
(pS

1 − pS
2 ) =

cN I

δ1

(pS
1 − pS

2 )

The equation is satisfied only if pS
1 = pS

2 . In a similar fashion, we have
pS

i = pS
j , pI

i = pI
j , and pM

i = pM
j .

We now find fixed points of the dynamical system (21). The fixed points
of (21) are solutions of the system:

pS = pS
∑N

j=1 dij(p
S + pM) + δ1p

I + δ2p
M

pI = (1− δ1)p
I + pS

∑N
j=1 cdijp

I

pM = (1− δ2)p
M + pS

∑N
j=1(1− c)dijp

I ,

(25)

which, since
∑

j dij = 1, reduces to

pS = pS(pS + pM) + δ1p
I + δ2p

M

pI = (1− δ1)p
I + pScpI

pM = (1− δ2)p
M + pS(1− c)pI ,

(26)

Equation (26) for at least one infected node at time zero has two solutions:

pS = 1, pI = 0, pM = 0 (27)

and

pS =
δ1

c

pM =
δ1(1− c)(c− δ1)

c(δ1 + c(δ2 − δ1))
(28)

pI =
δ2(c− δ1)

δ1 + c(δ2 − δ1)

Finally, we study the stability conditions of the fixed points. If we write
xi = pI

i and yi = pM
i , since pS

i (k) + pI
i (k) + pM

i (k) = 1, Eq. (21) can be
rewritten as a dynamical system F : [0, 1]2N → [0, 1]2N defined as

xi(k + 1) = (1− δ1)xi(k) + [1− xi(k)− yi(k)]c
∑N

j=1 dijxj(k)

yi(k + 1) = (1− δ2)yi(k) + [1− xi(k)− yi(k)](1− c)
∑N

j=1 dijxj(k).

(29)
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Jacobian matrix of the system (29) evaluated at the fixed point (x, y) is
equal to

DF |(x,y) =

[
(1− δ1 − cx)IN + (1− x− y)cD −cxIN

−(1− c)xIN + (1− x− y)(1− c)D [1− δ2 − (1− c)x]IN

]
,

where D and IN (identity matrix) are N ×N matrices.
The fixed point (x = 0, y = 0) exists for all values of the parameters. The

Jacobian matrix evaluated at this fixed point is

DF |(0,0) =

[
(1− δ1)I + cD 0N

(1− c)D (1− δ2)IN

]
.

The fixed point (0, 0) is stable when

1− δ1 + c < 1.

The last equation reduces to
c < δ1

Since pS ≤ 1, the fixed point (x = pI , y = pM) exists only when c > δ1

(the case c = δ1 reduces to pS = 1, pI = 0, pM = 0). After tedious but
straightforward calculation, it easy to see that this fixed point is stable for
all values of the parameters 0 < δ1 < 1, 0 < δ2 < 1, and δ1 < c < 1.

The proof of the theorem is completed. ¥

Remark 1. If δ1 = δ2 = 0, SIMS model reduces to SIM model. For the SIM
model the only stable fixed point is pS = 0, pI = c, pM = 1 − c, so that the
total number of infected and immune nodes is NI = cN and NM = (1− c)N
respectively.

Remark 2. In the SIMS model, the number of infected (or immune) nodes
exhibits a sharp threshold: as c is increased, it suddenly jumps from zero to
a non-zero fraction of N , the number of nodes in the system. The epidemic
threshold for SIMS model does not depend on graph topology: this is a simple
consequence of the fact that in our model the graph is described not with a
adjacency matrix, but with a stochastic matrix, for which the largest eigen-
value is always 1. The effect of the second eigenvalue and the eigenvector that
corresponds to the eigenvalue 1 to the spreading dynamics will be discussed
in a separate paper.
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Figure 1: Probability of infection VS click probability when δ1=0.3
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5. Conclusions

The influence model is a simple (and mathematically tractable) model
of random, dynamical interactions on networks. It consists of a network of
nodes, each with a status that evolves over time. The evolution of the status
at a node is according to an internal Markov chain, but with transition
probabilities that depend not only on the current status of that node, but
also on the statuses of the neighboring nodes. For influence model, each
site (node) may contain an arbitrary (finite) local chain and the network
may have an arbitrary (finite) graph and influence structure. In this paper
we have generalized influence model so that the status of a node and the
influences a node exerts from neighbors depend on the current status of the
node and the statuses of its neighbors. Such generalized model is flexible
enough to model various phenomena including spreading of failures in power
grid, malwere propagation in computer networks, and spreading of ideas in
social networks.

As a particular example we have discussed the spreading of malware
through a network. We considered three stochastic models: susceptible-
infective-removed (SIR), susceptible-infective-immune (SIM), and susceptible-
infective-immune-susceptible (SIMS). For SIMS model and arbitrary network
topology, we found analytical expressions for the epidemic threshold, the
number of infected, and the number of immune nodes.
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